|
|
Fatigue Properties and Fracture Mechanism of Aluminum Alloy with Orifice Chamfer and Pre-corrosion Damage |
ZHOU Song1,2, WANG Lei1, MA Chuang1, YANG Lin-qing1, XU Liang1, HUI Li1 |
1. Key Laboratory of Fundamental Science for National Defense of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China;
2. Department of Mechanical Engineering and Automation, Northeastern University, Shenyang 110004, China |
|
|
Abstract Fatigue fracture often occurs because of the corrosion damage to aerospace structural aluminum alloy with holes. Fatigue tests of 7075 aluminum alloy of both unchamfered and chamfered double-hole specimens under uncorrosion and 24h pre-corrosion were carried out. The influence of both pre-corrosion damage and orifice chamferer on fatigue properties and the differences of fatigue fracture characteristics were analyzed. The results show that the effect on fatigue life of pre-corrosion damage is significant. Median fatigue lives of both unchamfered and chamfered double-hole specimens under 24h pre-corrosion decrease about 31.74% and 26.92% compared with uncorrosion specimens. The orifice chamferer have a certain effect on fatigue life of both uncorrosion and 24h pre-corrosion specimens, with median fatigue lives decreased about 28.02% and 15.36% compared with unchamfered specimens, the main reason is due to the stress concentration after orifice chamfered, on the other hand, cutting marks lead to pre-damage during the orifice chamfering process which will result in an increase of the fatigue crack initiation sites and the fracture probability.
|
Received: 15 May 2015
Published: 13 June 2016
|
|
|
|
|
[1] 周松,谢里阳,回丽,等. 喷丸强化对2XXX铝合金疲劳寿命的影响[J].材料工程,2014,(12):86-91. ZHOU S, XIE L Y, HUI L, et al. Influence of shot peening on fatigue life of 2xxx aluminum alloy[J]. Journal of Materials Engineering, 2014,(12):86-91.
[2] 马少华,回丽,周松,等. 腐蚀环境对预腐蚀铝合金腐蚀疲劳性能的影响[J].材料工程,2015,43(2):91-95. MA S H, HUI L, ZHOU S, et al. Influence of corrosion environments on corrosion fatigue property of pre-corroded aluminum alloy[J]. Journal of Materials Engineering, 2015,43(2):91-95.
[3] 陈跃良,卞贵学,郁大照. 预腐蚀铝合金典型螺栓单搭接件疲劳寿命研究[J]. 工程力学,2012,29(5):251-256. CHEN Y L, BIAN G X, YU D Z. Study on fatigue life of pre-corrosion aluminum alloy typical single bolted lap joints[J]. Engineering Mechanics,2012,29(5):251-256.
[4] 胡本润,马少俊,童第华,等. 7050铝合金锻件缺陷容限值试验方法研究[J].航空材料学报,2015,35(1):82-86. HU B R, MA S J, TONG D H, et al. Test methods for determining flaw tolerance value of 7050 aluminum alloy forging[J]. Journal of Aeronautical Materials, 2015,35(1):82-86.
[5] SANKARAN K K, PEREZ R, JATA K V. Effects of pitting corrosion on the fatigue behavior of aluminum alloy 7075-T6:modeling and experimental studies[J]. Materials Science and Engineering, 2001, 297(1):223-229.
[6] PAO P S, GILL S J, FENG C R. On fatigue crack initiation from corrosion pits in 7075-T7351 aluminum alloy[J].Scripta Materialia, 2000, 43(5):391-396.
[7] 胡家林,陈跃良,张玎,等. 基于图像的腐蚀损伤及疲劳寿命研究[J]. 航空学报,2010,31(1):131-135. HU J L, CHEN Y L, ZHAN D, et al. Analysis of corrosion damage and fatigue life based on corrosion image[J]. Acta Aeronautica et Astronautica Sinica, 2010,31(1):131-135.
[8] 张有宏,吕国志,陈跃良. LY12-CZ铝合金预腐蚀及疲劳损伤研究[J].航空学报,2005,26(6):779-782. ZHANG Y H, LU G Z, CHEN Y L. Predicting fatigue life from precorrosion LY12-CZ aluminium test[J]. Acta Aeronautica et Astronautica Sinica, 2005,26(6):779-782.
[9] DUQUESNAY D L, UNDERHILL P R, BRITT H J. Fatigue crack growth from corrosion damage in 7075-T6511 aluminum alloy under aircraft loading[J]. International Journal of Fatigue, 2003,25:371-377.
[10] DOLLEY E J,LEE B,WEI R P. Effect of pitting corrosion on fatigue life[J]. Fatigue and Fracture of Engineering Materials and Structures,2000,23(7):555-560.
[11] GRUENBERG K M, CRAIG B A, HILLBERRY B M, et al. Predicting fatigue life of pre-corrosion 2024-T3 aluminum[J]. International Journal of Fatigue, 2004, 26(6):629-640.
[12] GRUENBERG K M, CRAIG B A, HILLBERRY B M, et al. Predicting fatigue life of pre-corrosion 2024-T3 aluminum from breaking load tests[J]. International Journal of Fatigue, 2004, 26(6):615-627.
[13] MALKI B, BAROUX B. Computer simulation of the corrosion pit growth[J].Corrosion Science, 2005, 47(1):171-182.
[14] RAMANA M P, LONG F, MATHEW J P. Computational simulation of multi-pit corrosion process in materials[J]. Computational Materials Science, 2008, 41(3):255-265.
[15] KIMBERLI J, SACHIN R S, PAUL N C, et al. Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy[J]. Corrosion Science, 2008,50(9):2588-2595.
[16] 刘建中,陈勃,叶序彬,等.含腐蚀预损伤铝合金2024-T62的疲劳断裂行为及基于断裂力学的寿命预测[J].航空学报,2011,32(1):107-116. LIU J Z, CHEN B, YE X B, et al. Fatigue and crack growth behavior of pre-corrosion aluminum alloy 2024-T62 and its life prediction based on fracture mechanics[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):107-116. |
|
|
|