|
|
Research progress in electrochemical sensors based on MXene |
Da CHEN, Yuqing SHI, Wei ZHANG, Meiling LIAN( ) |
Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China |
|
|
Abstract MXene is a two-dimensional (2D) layered material composed of early transition metal carbides, nitrides and carbonitride. Due to MXene's unique layered morphology, high electrical conductivity, high specific surface area, excellent hydrophilicity and good thermal stability, it has broad application prospect in the fields of physics, materials, chemistry and nanotechnology. It can also be used in a variety of scientific fields such as catalysis, energy storage and sensors. This paper mainly reviews the research progress in electrochemical sensors based on MXene. Firstly, the principle, composition, electrode surface modification of electrochemical sensors and the preparation methods of MXene were introduced. Then, the research progress of MXene in electrochemical enzyme sensors, electrochemical non-enzyme sensors, electrochemical immunosensors, electrochemical aptamer sensors and electrochemical molecularly imprinted sensors were reviewed. Finally, the industrialization and commercialization of MXene electrochemical sensing field, and the challenges of the development of new types of MXene were pointed out. The applications of MXene in various analytes and more potential fields were also prospected.
|
Received: 10 March 2021
Published: 18 April 2022
|
|
Corresponding Authors:
Meiling LIAN
E-mail: mllian@cauc.edu.cn
|
|
|
|
25] ">
|
Schematic diagram of synthesis of Ti4N3Tx by molten salt treatment of Ti4AlN3 in argon atmosphere[25]
|
|
Application of MXene in electrochemical sensors
|
36] ">
|
SEM image(a) and XRD pattern(b) of MXene, CV(c) and EIS(d) of different modified electrodes in Fe(CN)63-/4- solution (scan rate: 100 mV·s-1)[36]
|
59] ">
|
Preparation of signal label(a) and the diagram of fabrication of the immunosensor working electrode(b)[59]
|
68] ">
|
Schematic illustration for the preparation of MIP/MXene/NH2-CNTs/GCE and the adsorption mechanism in the imprinted cavity[68]
|
1 | CHEN A C , CHATTERJEE S . Nanomaterials based electroche-mical sensors for biomedical applications[J]. Chemical Society Reviews, 2013, 42, 5425- 5438. | 2 | KIM J , JEERAPAN I , CIUI B , et al. Edible electrochemistry: food materials based electrochemical sensors[J]. Advanced Healthcare Materials, 2017, 6 (22): 1700700. | 3 | LI X J , PING J F , YING Y B . Recent developments in carbon nanomaterial-enabled electrochemical sensors for nitrite detection[J]. Trends in Analytical Chemistry, 2019, 13, 1- 12. | 4 | TEYMOURIAN H , PARRILLA M , SEMPIONATTO J R , et al. Wearable electrochemical sensors for the monitoring and screening of drugs[J]. ACS Sensors, 2020, 5 (9): 2679- 2700. | 5 | 邹漫, 陈叶青. 碳点在生物诊疗中的应用[J]. 材料工程, 2020, 48 (9): 59- 68. | 5 | ZOU M , CHEN Y Q . Application of carbon dots in biological diagnosis and treatment[J]. Journal of Materials Engineering, 2020, 48 (9): 59- 68. | 6 | FAN Z , WANG Y S , XIE Z M , et al. A nanoporous MXene film enables flexible supercapacitors with high energy storage[J]. Nanoscale, 2018, 10 (20): 9642- 9652. | 7 | XU M S , LIANG T , SHI M M , et al. Graphene-like two-dimensional materials[J]. Chemical Reviews, 2013, 113 (5): 3766- 3798. | 8 | 杨程, 时双强, 郝思嘉, 等. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48 (7): 1- 13. | 8 | YANG C , SHI S Q , HAO S J , et al. Research progress in graphene based photocatalytic materials and applications in environmental purification[J]. Journal of Materials Engineering, 2020, 48 (7): 1- 13. | 9 | NOVOSELOV K S , MISHCHENKO A , CARVALHO A , et al. 2D materials and van der Waals heterostructures[J]. Science, 2016, 353 (6298): 1- 11. | 10 | NAGUIB M , KURTOGLU M , PRESSER V , et al. Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials, 2011, 23 (37): 4248- 4253. | 11 | LIANG X , GARSUCH A , NAZAR L F . Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie, 2015, 54 (13): 3907- 3911. | 12 | 齐新, 陈翔, 彭思侃, 等. MXenes二维纳米材料及其在锂离子电池中的应用研究进展[J]. 材料工程, 2019, 47 (12): 10- 20. | 12 | QI X , CHEN X , PENG S K , et al. Research progress on two-dimensional nanomaterials MXenes and their application for lithium-ion batteries[J]. Journal of Materials Engineering, 2019, 47 (12): 10- 20. | 13 | HAN M K , YIN X W , LI X L , et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces, 2017, 9 (23): 20038- 20045. | 14 | NAGUIB M , MOCHALIN V N , BARSOUM M W , et al. MXenes: a new family of two-dimensional materials[J]. Advanced Materials, 2014, 26 (7): 992- 1005. | 15 | CHEN K , CHOU W M , LIU L C , et al. Electrochemical sensors fabricated by electrospinning technology: an overview[J]. Sensors, 2019, 19 (17): 3676. | 16 | 张爽. 基于纳米复合材料的电化学传感器的构建及应用[D]. 烟台: 烟台大学, 2019. | 16 | ZHANG S. Construction and application of electrochemical sensors based on nanocomposites[D]. Yantai: Yantai University, 2019. | 17 | KALAMBATE P K , SANGHAVI B J , KARNA S P , et al. Si-multaneous voltammetric determination of paracetamol and dom-peridone based on a graphene/platinum nanoparticles/nafion composite modified glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2015, 213, 285- 294. | 18 | KALAMBATE P K , RAWOOL C R , SRIVASTAVA A K . Voltammetric determination of pyrazinamide at graphene-zinc oxide nanocomposite modified carbon paste electrode employing diffe-rential pulse voltammetry[J]. Sensors and Actuators B: Chemical, 2016, 237, 196- 205. | 19 | SINHA A , HANJAI D , TAN B , et al. MoS2 nanostructures for electrochemical sensing of multidisciplinary targets: a review[J]. Trends in Analytical Chemistry, 2018, 102, 75- 90. | 20 | TRAN M H , SCHAFER T , SHAHRAEI A , et al. Adding a new member to the MXene family: synthesis, structure, and electrocatalytic activity for the hydrogen evolution reaction of V4C3Tx[J]. ACS Applied Energy Materials, 2018, 1 (8): 3908- 3914. | 21 | XIE J , WANG X H , LIA A J , et al. Corrosion behavior of selec-ted Mn+1AXn phases in hot concentrated HCl solution: effect of a element and MX layer[J]. Corrosion Science, 2012, 60, 129- 135. | 22 | LUKATSKAYA M R , MASHTALIR O , REN C E , et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science, 2013, 341 (6153): 1502- 1505. | 23 | GHIDIU M , LUKATSKAYA M R , ZHAO M Q , et al. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance[J]. Nature, 2014, 516 (7529): 78- 81. | 24 | LIPATOV A , ALHABEB M , LUKATSKAYA M R , et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials, 2016, 2 (12): 1600255. | 25 | URBANKOWSKI P , ANASORI B , MAKARYAN T , et al. Synthesis of two-dimensional titanium nitride Ti4N3(MXene)[J]. Nanoscale, 2016, 8 (22): 11385- 11391. | 26 | LI T F , YAO L L , LIU Q L , et al. Fluorine-free synthesis of high-purity Ti3C2Tx(T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edittion, 2018, 57 (21): 6115- 6119. | 27 | GOGOTSI Y . Chemical vapour deposition: transition metal carbides go 2D[J]. Nature Materials, 2015, 14, 1079- 1080. | 28 | LI L F , WANG F , ZHU J F , et al. The facile synthesis of layered Ti2C MXene/carbon nanotube composite paper with enhanced electrochemical properties[J]. Dalton Trans, 2017, 46 (43): 14880- 14887. | 29 | WANG K , ZHOU Y F , XU W T , et al. Fabrication and thermal stability of two-dimensional carbide Ti3C2 nanosheets[J]. Ceramics International, 2016, 42 (7): 8419- 8424. | 30 | TANG Q , ZHOU Z , SHEN P W . Are MXenes promising anode materials for Li ion batteries?computational studies on electro-nic properties and Li storage capability of Ti3C2 and Ti3C2X2(X=F, OH) monolayer[J]. Journal of the American Chemical Society, 2012, 134 (40): 16909- 16916. | 31 | 吕生华, 李莹, 杨文强, 等. 氧化石墨烯/壳聚糖生物复合材料的制备及应用研究进展[J]. 材料工程, 2016, 44 (10): 119- 128. | 31 | LYU S H , LI Y , YANG W Q , et al. Research progress on preparation and application of graphene oxide/chitosan biocomposites[J]. Journal of Materials Engineering, 2016, 44 (10): 119- 128. | 32 | LIAN M L , XUE Z J , QIAO X Z , et al. Movable hollow nanoparticles as reactive oxygen scavengers[J]. Chem, 2019, 5 (9): 2378- 2387. | 33 | WANG F , YANG C H , DUAN C Y , et al. An organ-like titanium carbide material (MXene) with multilayer structure encapsulating hemoglobin for a mediator-free biosensor[J]. Journal of Electrochemical Society, 2015, 162 (1): 16- 21. | 34 | LIAN M L , XU L , ZHU X , et al. Seamless signal transduction from three-dimensional cultured cells to a superoxide anions biosensor via in situ self-assembly of dipeptide hydrogel[J]. Analy-tical Chemistry, 2017, 89, 12843- 12849. | 35 | LIU H , DUAN C , YANG C , et al. A novel nitrite biosensor based on the direct electrochemistry of hemoglobin immobilized on MXene-Ti3C2[J]. Sensors and Actuators B: Chemical, 2015, 218 (31): 60- 66. | 36 | WU L , LU X , WU Z , et al. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol[J]. Biosensors and Bioelectro-nics, 2018, 107, 69- 75. | 37 | WANG F , YANG C , DUAN M , et al. TiO2 nanoparticle modified organ-like Ti3C2 MXene nanocomposite encapsulating hemoglobin for a mediator-free biosensor with excellent performances[J]. Biosensors and Bioelectronics, 2015, 74, 1022- 1028. | 38 | ZHENG J S , DIAO J L , JIN Y Z , et al. An inkjet printed Ti3C2-GO electrode for the electrochemical sensing of hydrogen pero-xide[J]. Journal of Electrochemical Society, 2018, 165 (5): 227- 231. | 39 | 许双姐, 吴根英, 许贺. 石墨烯-壳聚糖复合物修饰电极构建电化学免疫传感器对1-芘丁酸的检测研究[J]. 分析测试学报, 2012, 31 (12): 1505- 1512. | 39 | XU S J , WU G Y , XU H . An electrochemical immunosensor for PBA detection based on graphene-chitosan composite film modified electrode[J]. Journal of Instrumental Analysis, 2012, 31 (12): 1505- 1512. | 40 | ZHOU L Y , ZHANG X N , MA L , et al. Acetylcholinesterase/chitosan-transition metal carbides nanocomposites-based biosensor for the organophosphate pesticides detection[J]. Biochemical Engineering Journal, 2017, 128, 243- 249. | 41 | SONG D D , JIANG X Y , LI Y S , et al. Metal-organic frameworks-derived MnO2/Mn3O4 microcuboids with hierarchically ordered nanosheets and Ti3C2 MXene/AuNPs composites for electrochemical pesticide detection[J]. Journal of Hazardous Materials, 2019, 373, 367- 376. | 42 | 李金磊, 邓凌峰, 张淑娴, 等. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49 (8): 127- 138. | 42 | LI J L , DENG L F , ZHANG S X , et al. Preparation and electrochemical performance of nano-silver-graphene composite by electroless plating[J]. Journal of Materials Engineering, 2021, 49 (8): 127- 138. | 43 | RAKHI R B , NAYUK P , XIA C , et al. Novel amperometric glucose biosensor based on MXene nanocomposite[J]. Scientific Reports, 2016, 6, 36422. | 44 | LORENCOVA L , BERTOK T , FILIP J , et al. Highly stable Ti3C2Tx (MXene)/Pt nanoparticles-modified glassy carbon electrode for H2O2 and small molecules sensing applications[J]. Sensors and Actuators B: Chemical, 2018, 263, 360- 368. | 45 | JIANG Y J , ZHANG X N , PEI L J , et al. Silver nanoparticles modified two-dimensional transition metal carbides as nanocarriers to fabricate acetycholinesterase-based electrochemical biosensor[J]. Chemical Engineering Journal, 2018, 339, 547- 556. | 46 | ZHAO F N , YAO Y Y , JIANG C M , et al. Self-reduction bimetallic nanoparticles on ultrathin MXene nanosheets as functional platform for pesticide sensing[J]. Journal of Hazardous Materials, 2020, 384, 121358. | 47 | SHANKAR S S , SHEREEMA R M , RAKHI R B . Electrochemical determination of adrenaline using MXene/graphite composite paste electrodes[J]. ACS Applied Materials & Interfaces, 2018, 10 (50): 43343- 43351. | 48 | WU D , WU M , YANG J , et al. Delaminated Ti3C2Tx (MXene) for electrochemical carbendazim sensing[J]. Materials Letters, 2019, 236, 412- 415. | 49 | LORENCOVA L , BERTOK T , DOSEKOVA E , et al. Electrochemical performance of Ti3C2Tx MXene in aqueous media: towards ultrasensitive H2O2sensing[J]. Electrochimica Acta, 2017, 235, 471- 479. | 50 | ZHU X L , LIU B C , HOU H J , et al. Alkaline intercalation of Ti3C2 MXene for simultaneous electrochemical detection of Cd(Ⅱ), Pb(Ⅱ), Cu(Ⅱ) and Hg(Ⅱ)[J]. Electrochimica Acta, 2017, 248, 46- 57. | 51 | 赵越, 洪波, 范楼珍. 三维金纳米团簇/多壁碳纳米管-Nafion膜修饰电极的电化学制备及血红蛋白的直接电化学[J]. 化学学报, 2013, 71, 239- 245. | 51 | ZHAO Y , HONG B , FAN L Z . Electrodeposition of gold nano-particle clusters on multi-wall carbon nanotubes and the direct electrochemistry of hemoglobin[J]. Acta Chimica Sinica, 2013, 71, 239- 245. | 52 | ZHENG J S , WANG B , DING A L , et al. Synthesis of MXene/DNA/Pd/Pt nanocomposite for sensitive detection of Dopamine[J]. Journal of Electroanalytical Chemistry, 2018, 816, 189- 194. | 53 | RASHEED P A , PANDEY R P , JABBAR K A , et al. Sensitive electrochemical detection of L-cysteine based on a highly stable Pd@Ti3C2Tx (MXene) nanocomposite modified glassy carbon electrode[J]. Analytical Methods, 2019, 11, 3851- 3856. | 54 | ZHU X L , LIU B C , LI L , et al. A micromilled microgrid sensor with delaminated MXene-bismuth nanocomposite assembly for simultaneous electrochemical detection of lead(Ⅱ), cadmium(Ⅱ) and zinc(Ⅱ)[J]. Microchimica Acta, 2019, 186, 776. | 55 | EIUMALAI S , MANI V , JEROMIYAS N , et al. A composite film prepared from titanium carbide Ti3C2Tx(MXene) and gold nanoparticles for voltammetric determination of uric acid and folic acid[J]. Microchimica Acta, 2020, 187, 33. | 56 | RASHEED P A , PANDEY R P , RASOOL K , et al. Ultra-sensitive electrocatalytic detection of bromate in drinking water based on nafion/Ti3C2Tx (MXene) modified glassy carbon electrode[J]. Sensors and Actuators B: Chemical, 2018, 265, 652- 659. | 57 | SHAHZAD F , IQBALA A L , ZAIDID S A , et al. Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmi-tter[J]. Journal of Industrial Engineering Chemistry, 2019, 79, 338- 344. | 58 | LI M H , FANG L , ZHOU H , et al. Three-dimensional porous MXene/NiCo-LDH composite for high performance non-enzymatic glucose sensor[J]. Applied Surface Science, 2019, 495, 143554. | 59 | DONG H , CAO L L , TAN Z L , et al. A signal amplification strategy of CuPtRh CNBs embedded ammoniated Ti3C2 MXene for detecting cardiac troponin Ⅰ by sandwich-type electrochemical immunosensor[J]. ACS Applied Bio Materials, 2020, 3 (1): 377- 384. | 60 | KUMAR S , LEI Y , ALSHAREEF N , et al. Biofunctionalized two-dimensional Ti3C2 MXenes for ultrasensitive detection of cancer biomarker[J]. Biosensors and Bioelectronics, 2018, 121, 243- 249. | 61 | XU Q , XU J K , JIA H Y , et al. Hierarchical Ti3C2 MXene-derived sodium titanate nanoribbons/PEDOT for signal amplified electrochemical immunoassay of prostate specific antigen[J]. Journal of Electroanalytical Chemistry, 2020, 860, 113869. | 62 | 张松柏, 胡霞, 沈广宇, 等. 电化学适体传感器研究进展[J]. 化学传感器, 2014, 32 (3): 13- 21. | 62 | ZHANG S B , HU X , SHEN G Y , et al. Recent development of electrochemical aptasensor[J]. Chemical Sensors, 2014, 32 (3): 13- 21. | 63 | WANG H , LI H , HUANG Y , et al. A label-free electrochemical biosensor for highly sensitive detection of gliotoxin based on DNA nanostructure/MXene nanocomplexes[J]. Biosensors and Bioelectronics, 2019, 142, 111531. | 64 | DUAN F H , GUO C P , HU M Y , et al. Construction of the 0D/2D heterojunction of Ti3C2Tx MXene nanosheets and iron phthalocyanine quantum dots for the impedimetric aptasensing of microRNA-155[J]. Sensors and Actuators B: Chemical, 2020, 310, 127844. | 65 | ZHOU S J , GU C X , LI Z Z , et al. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin[J]. Applied Surface Science, 2019, 498, 143889. | 66 | WANG H Y , SUN J J , LU L , et al. Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1[J]. Analytica Chimica Acta, 2020, 1094, 18- 25. | 67 | 李俣珠, 李增威, 曾月, 等. 分子印迹传感器的制备方法与应用进展[J]. 化学世界, 2019, 60 (8): 465- 475. | 67 | LI W Z , LI Z W , ZENG Y , et al. Progress of preparation and application of molecularly imprinting sensor[J]. Chemical World, 2019, 60 (8): 465- 475. | 68 | MA X , TU X L , GAO F , et al. Hierarchical porous MXene/amino carbon nanotubes-based molecular imprinting sensor for highly sensitive and selective sensing of fisetin[J]. Sensors and Actuators B: Chemical, 2020, 309, 127815. |
|
|
|
|