Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (7): 53-60    DOI: 10.11868/j.issn.1001-4381.2016.001540
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
石墨烯的制备及其对环氧树脂导电性能的影响
乔栩, 林治, 林晓丹()
华南理工大学 材料科学与工程学院, 广州 510640
Preparation of Graphene and Its Effect on Conductivity Epoxy Resin
Xu QIAO, Zhi LIN, Xiao-dan LIN()
School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
全文: PDF(4574 KB)   HTML ( 21 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用硼氢化钠(NaBH4)水溶液对一阶FeCl3插层石墨层间化合物(Graphite Intercalation Compound,GIC)进行膨胀剥离制备了高质量石墨烯,并由此制备了石墨烯/环氧树脂复合材料。结果表明:通过适当的无水氯化铁和天然鳞片石墨质量比,在330℃的条件下制备了FeCl3-GIC层间化合物。XRD和扫描电镜数据显示,石墨插层化合物的层间距从天然鳞片石墨的0.335nm增加到0.930nm,证明该层间化合物为一阶FeCl3-GIC。利用透射电子显微镜、拉曼光谱、傅里叶红外仪、X射线光电子能谱分析仪对石墨烯进行表征,表明成功制备了少数层或单层石墨烯,所得石墨烯结构缺陷较小,其ID/IG为0.09,C/O为40.80,对比天然鳞片石墨的ID/IG(0.17),说明NaBH4膨胀剥离的石墨插层化合物时,对天然鳞片石墨存在的结构缺陷进行了一定程度的修复。天然鳞片石墨的傅里叶红外谱图中存在C=O(1735cm-1),环氧结构C-O(1228cm-1)特征峰,而相对应的峰位置石墨烯没有官能团特征峰表现出来,表明硼氢化钠产生的氢成功还原石墨中的氧使石墨结构更完善。以该高质量石墨烯与环氧树脂制备的复合材料的导电性能随石墨烯含量的增加逐渐增强,体积电阻率从纯环氧树脂的1.95×1013Ω·cm降低到石墨烯体积分数为3.70%时的3.41×105Ω·cm,材料的导电性提高了8个数量级;材料断面形貌的SEM照片表明石墨烯与环氧树脂存在一定的不相容性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
乔栩
林治
林晓丹
关键词 石墨烯超共轭结构石墨层间化合物环氧树脂体积电阻率    
Abstract

High quality graphene and its epoxy composites were prepared by exfoliation of first stage FeCl3-GICs with sodium borohydride (NaBH4) aqueous solution, followed by compounding with epoxy resin. First stage FeCl3-GICs were prepared by compounding anhydrous FeCl3 and graphite at 330℃. XRD analysis and scanning electron microscopy data show that the interlayer spacing of graphite intercalation compounds is increased from 0.335nm to 0.930nm, indicates first stage FeCl3-GIC is obtained. Transmission electron microscopy shows single layer grapheme is made. Raman spectroscopy and XPS data show that the graphene's ID/IG=0.09, C/O=40.80, comparing that of flake graphite's ID/IG=0.17 and FTIR spectra, suggesting that NaBH4 exfoliation can simultaneously repair the structural defects of flake graphite. Characteristic peaks of C=O(1735cm-1), C-O(1228cm-1)are found in FTIR spectra of flake graphite, while no functional groups characteristic peaks of graphene shows up in the corresponding locations, indicating that hydrogen produced by sodium borohydride successfully reduces oxygen from graphite makes the graphite more complete structure. The conductivity of composites gradually increases with the increase of graphene content, and the volume resistivity decreases from the pure epoxy resin of 1.95×1013Ω·cm to 3.41×105Ω·cm when the volume fraction is 3.70%. The conductivity of the composites increases by 8 orders of magnitude.SEM images of fracture morphology shows some incompatibility exists between graphene and epoxy resin.

Key wordsgraphene    super conjugated structure    graphite intercalation compound    epoxy resin    volume resistivity
收稿日期: 2016-12-21      出版日期: 2018-07-20
中图分类号:  TB332  
基金资助:广东省科技计划项目(2016B090918027);广州市科技计划项目(201604016061);白云区科技项目(2016-KJ-015)
通讯作者: 林晓丹     E-mail: mcxdlin@scut.edu.cn
作者简介: 林晓丹(1964-), 男, 副研究员, 博士, 主要从事高分子材料的结构与性能研究、阻燃机理研究等, 联系地址:广东省广州市天河区华南理工大学五山校区25号楼(唯美楼)242室(510641), E-mail:mcxdlin@scut.edu.cn
引用本文:   
乔栩, 林治, 林晓丹. 石墨烯的制备及其对环氧树脂导电性能的影响[J]. 材料工程, 2018, 46(7): 53-60.
Xu QIAO, Zhi LIN, Xiao-dan LIN. Preparation of Graphene and Its Effect on Conductivity Epoxy Resin. Journal of Materials Engineering, 2018, 46(7): 53-60.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001540      或      http://jme.biam.ac.cn/CN/Y2018/V46/I7/53
Fig.1  天然鳞片石墨、一阶石墨插层化合物、石墨烯的XRD图
Fig.2  石墨烯结构表征(a)拉曼光谱图;(b)傅里叶红外光谱图;(c)XPS图
Fig.3  石墨插层化合物(a)、膨胀石墨(b)和鳞片石墨与膨胀石墨(c)对比图
Fig.4  天然鳞片石墨(a)、石墨插层化合物(b)和石墨烯(c)的扫描电镜照片
Fig.5  石墨烯的TEM图(a)~(c)及电子衍射图(d)
Fig.6  石墨烯的原子力显微镜(AFM)图(a)及划线区域的高度曲线图(b)
Fig.7  实验材料的红外谱图
Fig.8  石墨烯/环氧树脂复合材料体积电阻率
Sample Volume resistivity/(Ω·cm) Volume fraction/%
GnPs[24]epoxy resin 106 2.3
Graphene[25] /Epoxy resin 107 0.46
m-GnPs[26] /Epoxy resin 108 0.489
Table 1  不同方法制备的石墨烯分散在环氧树脂中的导电性能[24-26]
Fig.9  不同含量的石墨烯分散在环氧树脂中的SEM图
(a)0;(b)0.22%;(c)0.42%,(d)0.84%;(e)2.27%;(f)3.70%
1 BOLOTIN K I , SIKES K J , JIANG Z , et al. Ultrahigh electron mobility in suspended graphene[J]. Solid State Commun, 2008, 146 (9/10): 351- 355.
2 BALANDIN A A , GHOSH S , BAO W Z , et al. Superior thermal conductivity of single-layer graphene[J]. Nano Lett, 2008, 8 (3): 902- 907.
doi: 10.1021/nl0731872
3 LEE C , WEI X D , KYSAR J W , et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321 (5887): 385- 388.
doi: 10.1126/science.1157996
4 NAIR R R , BLAKE P , GRIGORENKO A N , et al. Fine structure constant defines visual transparency of graphene[J]. Science, 2008, 320 (5881): 1308- 1308.
doi: 10.1126/science.1156965
5 杨文彬, 张丽, 刘菁伟, 等. 石墨烯复合材料的制备及应用研究进展[J]. 材料工程, 2015, 43 (3): 91- 97.
doi: 10.11868/j.issn.1001-4381.2015.03.016
5 YANG W B , ZHANG L , LIU J W , et al. Progress in research on preparation and application of graphene composites[J]. Journal of Materials Engineering, 2015, 43 (3): 91- 97.
doi: 10.11868/j.issn.1001-4381.2015.03.016
6 KIM K S , ZHAO Y , JANG H , et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes[J]. Nature, 2009, 457 (7230): 706- 710.
doi: 10.1038/nature07719
7 LI N , WANG Z Y , ZHAO K K , et al. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method[J]. Carbon, 2010, 48 (1): 255- 259.
doi: 10.1016/j.carbon.2009.09.013
8 BERGER C , SONG Z M , LI T B , et al. Ultrathin epitaxial graphite:2D electron gas properties and a route toward graphene-based nanoelectronics[J]. J Phys Chem B, 2004, 108 (52): 19912- 19916.
doi: 10.1021/jp040650f
9 KOSYNKIN D V , HIGGINBOTHAM A L , SINITSKⅡ A , et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458 (7240): 872- 875.
doi: 10.1038/nature07872
10 NOVOSELOV K S , GEIM A K , MOROZOV S V , et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306 (5696): 666- 669.
doi: 10.1126/science.1102896
11 HERNANDEZ Y , NICOLOSI V , LOTYA M , et al. High-yield production of graphene by liquid-phase exfoliation of graphite[J]. Nat Nanotechnol, 2008, 3 (9): 563- 568.
doi: 10.1038/nnano.2008.215
12 SHIN H J , KIM K K , BENAYAD A , et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance[J]. Adv Funct Mater, 2009, 19 (12): 1987- 1992.
doi: 10.1002/adfm.v19:12
13 王艳春, 曾效舒, 敖志强, 等. 热还原石墨烯的制备及其对重金属Pb2+的吸附性[J]. 材料工程, 2017, 5 (10): 6- 11.
doi: 10.11868/j.issn.1001-4381.2016.000815
13 WANG Y C , ZENG X S , AO Z Q , et al. Preparation of graphene via thermal reduction and its adsorption capacity for heavy metal Pb2+[J]. Journal of Materials Engineering, 2017, 45 (10): 6- 11.
doi: 10.11868/j.issn.1001-4381.2016.000815
14 PEI S F , CHENG H M . The reduction of graphene oxide[J]. Carbon, 2012, 50 (9): 3210- 3228.
doi: 10.1016/j.carbon.2011.11.010
15 ENGLERT J M , DOTZER C , YANG G A , et al. Covalent bulk functionalization of graphene[J]. Nat Chem, 2011, 3 (4): 279- 286.
doi: 10.1038/nchem.1010
16 FU W J , KIGGANS J , OVERBURY S H , et al. Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound[J]. Chem Commun, 2011, 47 (18): 5265- 5267.
doi: 10.1039/c1cc10508f
17 GENG X M , GUO Y F , LI D F , et al. Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene[J]. Sci Rep, 2013, 3, 1134.
doi: 10.1038/srep01134
18 WANG G , DAI J , MA L . Influence of graphene prepared by chemical method on epoxy resin electric conductivity[J]. J Tongji Univ(Nat Sci), 2014, 42 (9): 1377- 1383.
19 DRESSELHAUS M S , DRESSELHAUS G . Intercalation compounds of graphite[J]. Adv Phys, 2002, 51 (1): 1- 186.
doi: 10.1080/00018730110113644
20 FERRARI A C . Raman spectroscopy of graphene and graphite:disorder, electron-phonon coupling, doping and nonadiabatic effects[J]. Solid State Commun, 2007, 143 (1/2): 47- 57.
21 FERRARI A C , BASKO D M . Raman spectroscopy as a versatile tool for studying the properties of graphene[J]. Nat Nanotechnol, 2013, 8 (4): 235- 246.
doi: 10.1038/nnano.2013.46
22 杨真真, 郑庆彬, 邱汉迅, 等. CaCl2催化NaBH4还原氧化石墨烯[J]. 新型炭材料, 2015, 30 (1): 41- 47.
22 YANG Z Z , ZHENG Q B , QIU H X , et al. A simple method for the reduction of graphene oxide by sodium borohydride with CaCl2 as a catalyst[J]. New Carbon Materials, 2015, 30 (1): 41- 47.
23 MARCQ F , DEMONT P , MONFRAIX P , et al. Carbon nanotubes and silver flakes filled epoxy resin for new hybrid conductive adhesives[J]. Microelectronics Reliability, 2011, 51 (7): 1230- 1234.
doi: 10.1016/j.microrel.2011.03.020
24 MENG Q S , WU H , ZHAO Z H , et al. Free-standing, flexible, electrically conductive epoxy/graphene composite films[J]. Compos Pt A-Appl Sci Manuf, 2017, 92, 42- 50.
doi: 10.1016/j.compositesa.2016.10.028
25 WAJID A S , AHMED H S T , DAS S , et al. High-performance pristine graphene/epoxy composites with enhanced mechanical and electrical properties[J]. Macromol Mater Eng, 2013, 298 (3): 339- 347.
doi: 10.1002/mame.201200043
26 ZAMAN I , KUAN H C , MENG Q S , et al. A facile approach to chemically modified graphene and its polymer nanocomposites[J]. Adv Funct Mater, 2012, 22 (13): 2735- 2743.
doi: 10.1002/adfm.v22.13
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 李守佳, 罗春燕, 陈卫星, 方铭港, 孙健鑫. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106.
[3] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[4] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[5] 吴乾鑫, 刘磊, 孙晋蒙, 李一帆, 刘宇航, 杜洪方, 艾伟, 杜祝祝, 王科. 磺酸基修饰石墨烯复合材料的储钠性能研究[J]. 材料工程, 2022, 50(4): 36-43.
[6] 杜宗波, 时双强, 陈宇滨, 褚海荣, 杨程. 介电型石墨烯吸波复合材料研究进展[J]. 材料工程, 2022, 50(4): 74-84.
[7] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[8] 侯小鹏, 曾浩, 杜邵文, 李娜, 朱怡雯, 傅小珂, 李秀涛. 基于工业化碳材料的锂氟化碳电池正极材料制备及性能[J]. 材料工程, 2022, 50(3): 107-114.
[9] 阚侃, 王珏, 付东, 郑明明, 张晓臣. 氮掺杂碳纤维包覆石墨烯纳米片的构建及电容特性[J]. 材料工程, 2022, 50(2): 94-102.
[10] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[11] 刘龙, 梁森, 王得盼, 周越松, 郑长升. 硅烷偶联剂及氧化石墨烯二次改性对芳纶纤维界面性能的影响[J]. 材料工程, 2022, 50(1): 145-153.
[12] 李金磊, 邓凌峰, 张淑娴, 谭洁慧, 覃榕荣, 王壮. 化学镀制备纳米银-石墨烯复合材料及其电化学性能[J]. 材料工程, 2021, 49(8): 127-138.
[13] 李颖, 雷蕊, 徐文凯, 朱小雪, 黄艳凤. 磁性氧化石墨烯基17β-雌二醇分子印迹复合膜的制备与性能[J]. 材料工程, 2021, 49(6): 170-177.
[14] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[15] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn