Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (1): 91-96    DOI: 10.11868/j.issn.1001-4381.2017.001451
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
六咪唑环三磷腈的合成及其作为环氧树脂固化促进剂的性能
张博文, 唐禹尧, 崔玉青, 魏玮(), 李小杰, 罗静, 刘晓亚
江南大学 化学与材料工程学院, 江苏 无锡 214122
Synthesis of hexa (imidazolyl) cyclotriphosphazene and its performance as curing catalyst of epoxy resin
Bo-wen ZHANG, Yu-yao TANG, Yu-qing CUI, Wei WEI(), Xiao-jie LI, Jing LUO, Xiao-ya LIU
School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
全文: PDF(1333 KB)   HTML ( 30 )  
输出: BibTeX | EndNote (RIS)      
摘要 

利用六氯环三磷腈与咪唑发生亲核取代反应,合成六咪唑环三磷腈(HImCP);通过红外光谱、核磁共振1H谱和31P谱对其结构进行表征;进一步将其作为固化促进剂,加入双酚A型环氧树脂(E51)/甲基六氢苯酐(MHHPA)固化体系,通过凝胶时间和非等温DSC固化动力学分析研究体系的室温存储稳定性和高温固化反应活性,并考察固化物的力学性能和热性能。结果表明:相较于咪唑,HImCP是一种良好的潜伏性固化促进剂,当其添加量为1%(质量分数)时,E51/MHHPA体系具有较好的室温存储稳定性和高温固化活性;同时,得到的环氧树脂固化物表现出更高的拉伸强度、玻璃化转变温度和热稳定性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张博文
唐禹尧
崔玉青
魏玮
李小杰
罗静
刘晓亚
关键词 环氧树脂咪唑六氯环三磷腈潜伏性固化促进剂    
Abstract

Hexa (imidazolyl) cyclotriphosphazene (HImCP) was synthesized by nucleophilic substitution reaction of hexachlorocyclotriphosphazene with imidazole. The chemical structure was characterized by FT-IR, 1H-NMR, and 31P-NMR. Then the as-prepared HImCP was utilized as curing catalyst for curing of diglycidylether of bisphenol A(E51)with methylhexahydrophthalic anhydride(MHHPA). Its influence on the storage stability at room temperature and curing activity at high temperature of E51/MHHPA system was studied by gelatum time and non-isothermal DSC analysis. The mechanical performance, glass-transition temperature(Tg), and thermostability of the obtained epoxy thermosets were also investigated. The results show that HImCP is a good latent curing catalyst contrast with unmodified imidazole. When the epoxy resin curing system contains 1% (mass fraction) of HImCP, it exhibits improved storage stability at room temperature as compared to that containing imidazole, as well as satisfied curing activity at high temperature. In addition, the obtained thermoset has higher tensile strength, Tg and thermostability than that resulted from imidazole.

Key wordsepoxy resin    imidazole    hexachlorocyclotriphosphazene    latent curing catalyst
收稿日期: 2017-11-25      出版日期: 2019-01-16
中图分类号:  TQ323.5  
基金资助:江苏省政策引导类计划-产学研前瞻性联合研究项目(BY2015019-08)
通讯作者: 魏玮     E-mail: wwei1985@jiangnan.edu.cn
作者简介: 魏玮(1985-), 男, 副教授, 博士, 研究方向:热固性环氧树脂、大分子功能胶体, 联系地址:江苏省无锡市滨湖区蠡湖大道1800号江南大学化学与材料工程学院(214122), E-mail:wwei1985@jiangnan.edu.cn
引用本文:   
张博文, 唐禹尧, 崔玉青, 魏玮, 李小杰, 罗静, 刘晓亚. 六咪唑环三磷腈的合成及其作为环氧树脂固化促进剂的性能[J]. 材料工程, 2019, 47(1): 91-96.
Bo-wen ZHANG, Yu-yao TANG, Yu-qing CUI, Wei WEI, Xiao-jie LI, Jing LUO, Xiao-ya LIU. Synthesis of hexa (imidazolyl) cyclotriphosphazene and its performance as curing catalyst of epoxy resin. Journal of Materials Engineering, 2019, 47(1): 91-96.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001451      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/91
Fig.1  六氯环三磷腈与咪唑的反应路线
Fig.2  HCCP, Im和HImCP的红外光谱图
Fig.3  HCCP,Im和HImCP的核磁共振
(a)氢谱;(b)磷谱
Fig.4  E51/MHHPA/Im(1)体系和E51/MHHPA/HImCP(2)体系的非等温固化行为
(a)非等温DSC曲线;(b)不同升温速率下的转化率与固化温度的关系曲线
β/(℃·min-1) E51/MHHPA/Im E51/MHHPA/HImCP
Ti/℃ Tp/℃ Tf/℃ ΔH/(J·g-1) Ti/℃ Tp/℃ Tf/℃ ΔH/(J·g-1)
 5 109.5 127.7 144.2 151.8 117.4 141.9 167.9 201.4
10 111.8 132.9 152.0 163.8 126.7 153.9 180.9 204.7
15 116.7 140.1 160.7 194.5 135.6 162.8 187.0 210.8
20 118.5 144.2 166.4 189.8 137.7 167.3 192.3 214.2
25 117.2 150.6 175.3 203.8 146.9 174.0 200.2 211.6
Table 1  E51/MHHPA/Im体系与E51/MHHPA/HImCP体系的非等温固化热力学参数
Fig.5  E51/MHHPA/Im体系和E51/MHHPA/HImCP体系的活化能与转化率的关系
Fig.6  E51/MHHPA/Im体系和E51/MHHPA/HImCP体系的室温存储稳定性
Fig.7  E51/MHHPA/Im体系和E51/MHHPA/HImCP体系的固化物热性能
Fig.8  E51/MHHPA/Im体系和E51/MHHPA/HImCP体系的固化物力学性能
(a)拉伸强度;(b)冲击强度
1 王园园, 田玉洁, 黄文迎, 等. 环氧塑封料固化促进剂的发展现状和前景[J]. 广州化工, 2014, 42 (10): 24- 27.
doi: 10.3969/j.issn.1001-9677.2014.10.010
1 WANG Y Y , TIAN Y J , HUANG W Y , et al. Current situation and future trend of curing accelerator for epoxy molding compounds[J]. Guangzhou Chemical Industry, 2014, 42 (10): 24- 27.
doi: 10.3969/j.issn.1001-9677.2014.10.010
2 YE W T , WEI W , FEI X M , et al. Six-arm star-shaped polymer with cyclophosphazene core and poly(ε-caprolactone) arms as modifier of epoxy thermosets[J]. Journal of Applied Polymer Science, 2016, 134 (2): 44384- 44393.
3 FEI X M , WEI W , TANG Y , et al. Simultaneous enhancements in toughness, tensile strength and thermal properties of epoxy-anhydride thermosets with a carboxyl-terminated hyperbranched polyester[J]. European Polymer Journal, 2017, 90, 431- 441.
doi: 10.1016/j.eurpolymj.2017.03.022
4 NORRIS B C , SHEPPARD D G , HENKELMAN G , et al. Kinetic and thermodynamic evaluation of the reversible N-heterocyclic carbene-isothiocyanate coupling reaction:applications in latent catalysis[J]. Journal of Organic Chemistry, 2011, 76 (1): 301- 304.
5 WAN Y J , TANG L C , GONG L X , et al. Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties[J]. Carbon, 2014, 69 (2): 467- 480.
6 TOMUTA A M , RAMIS X , FERNáNDEZ-FRANCOS X , et al. New chemically reworkable epoxy coatings obtained by the addition of polyesters with star topologies to diglycidyl ether of bisphenol a resins[J]. Progress in Organic Coatings, 2013, 76 (11): 1616- 1624.
doi: 10.1016/j.porgcoat.2013.07.010
7 SHIN M J , SHIN Y J , HWANG S W , et al. Microencapsulation of imidazole curing agent by solvent evaporation method using W/O/W emulsion[J]. Journal of Applied Polymer Science, 2013, 129 (3): 1036- 1044.
doi: 10.1002/app.38767
8 WEI W , LU R J , YE W T . Liquid marbles stabilized by fluorine-bearing cyclomatrix polyphosphazene particles and their application as high-efficiency miniature reactors[J]. Langmuir, 2016, 32 (7): 1707- 1715.
doi: 10.1021/acs.langmuir.5b04697
9 WANG W , DI N , CAO W R , et al. Cure kinetics of epoxy resin using 1, 2, 4, 5-benzenetetracarboxylic acid/2-ethyl-4-methylimidazole salt as a latent hardener[J]. Material Research Innovations, 2016, 19 (Suppl 8): 502- 507.
10 MIN J S , SHIN Y J , HWANG S W , et al. Microencapsulation of imidazole curing agent by solvent evaporation method using W/O/W emulsion[J]. Journal of Applied Polymer Science, 2013, 129 (3): 1036- 1044.
doi: 10.1002/app.38767
11 FUENSANTA M , GRAU A , ROMERO-SÁNCHEZ M D , et al. Effect of the polymer shell in imidazole microencapsulation by solvent evaporation method[J]. Polymer Bulletin, 2013, 70 (11): 3055- 3074.
doi: 10.1007/s00289-013-1007-z
12 ARIMITSU K , FUSE S , KUDO K , et al. Imidazole derivatives as latent curing agents for epoxy thermosetting resins[J]. Materials Letters, 2015, 161, 408- 410.
doi: 10.1016/j.matlet.2015.08.141
13 YEN W P , CHEN K L , YEH M Y , et al. Investigation of soluble PEG-imidazoles as the thermal latency catalysts for epoxy-phenolic resins[J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, 59, 98- 105.
14 WEI W , YE W T , R L U , et al. Studies of selective detection of picric acid in solution phase using fluorescent polyphosphazene nanofibers[J]. Acta Polymerica Sinica, 2015, 12, 1477- 1485.
15 TOMUTA A M , FERNÁNDEZ-FRANCOS X , FERRANDO F , et al. Enhanced chemical reworkability of DGEBA thermosets cured with rare earth triflates using aromatic hyperbranched polyesters (HBP) and multiarm star HBP-b-poly(ε-caprolactone) as modifiers[J]. Polymers for Advanced Technologies, 2013, 24 (11): 962- 970.
doi: 10.1002/pat.v24.11
16 YANG G , ZHENG B , YANG J , et al. Preparation and cryogenic mechanical properties of epoxy resins modified by poly (ethersulfone)[J]. Journal of Polymer Science Part A:Polymer Chemistry, 2008, 46 (2): 612- 624.
doi: 10.1002/(ISSN)1099-0518
17 LI S , CUI C , HOU H , et al. Synthesis and characterization of amino-terminated hyperbranched polymer and its effect on impact resistance of epoxy resin thermosets[J]. Colloid and Polymer Science, 2015, 293 (9): 2681- 2688.
doi: 10.1007/s00396-015-3665-x
[1] 贾耀雄, 许良, 敖清阳, 张文正, 王涛, 魏娟. 不同热氧环境对T800碳纤维/环氧树脂复合材料力学性能的影响[J]. 材料工程, 2022, 50(4): 156-161.
[2] 王牧, 曾夏茂, 苗霞, 魏浩光, 周仕明, 冯岸超. 三维石墨烯-吡咯气凝胶/环氧树脂复合材料的制备及其性能[J]. 材料工程, 2022, 50(1): 117-124.
[3] 张代军, 陈俊, 包建文, 钟翔屿, 陈祥宝. 树脂基体中热塑性树脂含量对碳纤维环氧复合材料Ⅱ型层间断裂韧性的影响[J]. 材料工程, 2021, 49(6): 178-184.
[4] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 三维结构石墨烯气凝胶/环氧树脂复合材料的制备和电磁屏蔽性能[J]. 材料工程, 2021, 49(5): 82-88.
[5] 周松, 贾耀雄, 许良, 边钰博, 涂宜鸣. 湿热环境对T800碳纤维/环氧树脂基复合材料力学性能的影响[J]. 材料工程, 2021, 49(10): 138-143.
[6] 王钰登, 郑亚萍, 宋珊, 姚东东. SiO2无溶剂纳米流体粒径和含量对环氧树脂力学和热性能的影响[J]. 材料工程, 2021, 49(10): 156-163.
[7] 孙鹏, 李忠芳, 王传刚, 王燕, 崔伟慧, 裴洪昌, 尹晓燕. 燃料电池用高温质子交换膜的研究进展[J]. 材料工程, 2021, 49(1): 23-34.
[8] 张成林, 董抒华, 李丽君, 田龙雨, 谭洪生. E-玻纤/环氧树脂预浸料固化动力学及其动态热力学性能[J]. 材料工程, 2020, 48(9): 152-157.
[9] 李为民, 彭超义, 杨金水, 邢素丽. PTFE/epoxy全有机超疏水涂层制备[J]. 材料工程, 2020, 48(7): 162-169.
[10] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[11] 侯桂香, 谢建强, 姚少巍, 张云杰, 蓝文. 生物基没食子酸环氧树脂/纳米氧化锌抗菌涂层的制备与性能[J]. 材料工程, 2020, 48(3): 34-39.
[12] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[13] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[14] 陈珂龙, 张桐, 崔溢, 王智勇. 超支化聚合物(HBPs)改性环氧树脂的研究进展[J]. 材料工程, 2019, 47(7): 11-18.
[15] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn