Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (9): 138-143    DOI: 10.11868/j.issn.1001-4381.2014.000554
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
钛-钢爆炸复合板熔焊对接过渡层焊接材料
史倩茹1, 张敏2, 吴伟刚1
1. 西安航空学院 材料工程学院, 西安 710077;
2. 西安理工大学 材料科学与工程学院, 西安 710048
Transition Layer Welding Materials of Fusion Welding Joint for Titanium-steel Explosive Composite Plate
SHI Qian-ru1, ZHANG Min2, WU Wei-gang1
1. School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, China;
2. School of Materials Science and Engineering, Xi'an University of Technology, Xi'an 710048, China
全文: PDF(4350 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过设计TA1-X80爆炸复合板熔焊连接过渡层焊接材料及焊接工艺,结合复合板对接实验及接头组织、成分及性能测试实验,研究钛-钢复合板熔焊对接的过渡层焊接材料及工艺。结果表明:开Y型坡口并采用近钛层+近钢层双层过渡,且近钛层采用Ti-Ni-Al合金系、近钢层采用Ni-Cr-Fe合金系,可实现钛-钢复合板的冶金对接。焊缝组织由钛层粗大等轴晶逐渐转变为过渡层细小等轴晶或树枝晶,并与钢层组织相互交织连接;所得接头抗拉强度及屈服强度分别为501.1,373.0MPa,均达到了复合板接头等强匹配效果,塑/韧性稍有不足,需通过减小过渡层厚度、调整焊材中细化晶粒元素等改善焊缝塑/韧性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
史倩茹
张敏
吴伟刚
关键词 熔焊对接过渡层焊接材料微观组织力学性能    
Abstract:The welding materials and processes of fusion welding joint for TA1-X80 explosive composite plate were designed by corresponding welding experiment. Based on the microstructure, composition and properties of the welded joints, a good welding material and process as transition layer for welding titanium-steel composite plate was obtained. The results show that Y-type groove and double-layer transition for metallurgical connection of titanium-steel composite plate are effective. The double-layer consists of nearly titanium layer of Ti-Ni-Al alloy and nearly steel layer of Ni-Cr-Fe alloy. The weld microstructure is changed from coarse equiaxed grain in the titanium layer to fine equiaxed grain or dendrite in the transition layer, and finally is interlaced with the structure of steel. The tensile and yield strength of the welded joint are 501.1MPa and 373.0MPa respectively, which reach the equal match. But the plasticity and toughness are slightly insufficient, which can be improved subsequently by reducing the thickness of the transition layer and adjusting the elements for refining grain size.
Key wordswelding butt joint    transition layer    welding material    microstructure    mechanical property
收稿日期: 2017-05-14      出版日期: 2018-09-19
中图分类号:  TG422.3  
通讯作者: 史倩茹(1989-),女,硕士,主要从事新型焊接材料、新材料焊接工艺、焊接应力应变计算方面研究工作,联系地址:陕西省西安市西二环259号西安航空学院材料工程学院(710077),E-mail:331877532@qq.com     E-mail: 331877532@qq.com
引用本文:   
史倩茹, 张敏, 吴伟刚. 钛-钢爆炸复合板熔焊对接过渡层焊接材料[J]. 材料工程, 2018, 46(9): 138-143.
SHI Qian-ru, ZHANG Min, WU Wei-gang. Transition Layer Welding Materials of Fusion Welding Joint for Titanium-steel Explosive Composite Plate. Journal of Materials Engineering, 2018, 46(9): 138-143.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.000554      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/138
[1] 张斌,钱成文,王玉梅,等. 国内外高钢级管线钢的发展及应用[J]. 石油工程建设,2012,38(1):1-4. ZHANG B,QIAN C W,WANG Y M,et al. Development and application of high-grade pipeline steel at home and abroad[J]. Petroleum Engineering Construction,2012,38(1):1-4.
[2] 余伟,王班,贺婕,等.多层金属复合板的热轧制备方法[J].材料工程,2017,45(2):32-38. YU W,WANG B,HE J,et al. Hot-rolled process of multilayered composite metal plate[J]. Journal of Materials Engineering,2017,45(2):32-38.
[3] 柯伟. 中国工业与自然环境腐蚀调查的进展[J]. 腐蚀与防护,2004,25(1):2-7. KE W. Progress in public inquiry concerning corrosion in Chinese industrial and natural environments[J]. Corrosion & Protection,2004,25(1):2-7.
[4] 宋爱平. 钛钢复合板焊接技术[J]. 钢结构,2012,27(7):55-56. SONG A P. Welding technology of titanium steel composite plate[J]. Steel Construction,2012,27(7):55-56.
[5] MANIKANDAN P,HOKAMOTO K,RAGHUKANDAN K,et al. Explosive welding of titanium/stainless steel by controlling energetic condition[J]. Materials Transaction,2006,47(8):2049-2055.
[6] 陈满乾,刘亚芬. TA2/Q235B钛钢复合板的焊接[J]. 焊接,2007(8):53-54. CHEN M Q,LIU Y F. Welding of TA2/Q235B titanium/steel composite plate[J]. Welding & Joining,2007(8):53-54.
[7] 刘凤尧,林三宝,杨春丽,等. TIG焊活性剂对焊缝成形的影响[J]. 焊接学报,2002,23(1):3-5. LIU F Y,LIN S B,YANG C L,et al. Effect of activating fluxes on weld form in TIG welding of stainless steel and titanium alloy[J]. Transaction of the China Welding Institution,2002,23(1):3-5.
[8] 毕宗岳,丁宝峰,张峰,等. 2205/Q235大面积双相不锈钢复合板性能分析[J]. 焊管,2010,33(3):25-28. BI Z Y,DING B F,ZHANG F,et al. Performance analysis of large area 2205/Q235 duplex stainless steel composition plate[J]. Weld Pipe,2010,33(3):25-28.
[9] 孙荣禄,张九海. 钛及钛合金与钢焊接的问题及研究现状[J]. 宇航材料工艺,1997(2):7-11. SUN R L, ZHANG J H. Welding problems and present situation of titanium or titanium alloy and steel[J]. Aerospace Materials & Technology,1997(2):7-11.
[10] 袁江,周惦武,陈胜迁,等. 钢/铝添加粉末激光焊接头界面组织与性能[J]. 材料工程,2017,45(9):123-128. YUAN J,ZHOU D W,CHEN S Q,et al. Interfacial microstructure and properties of steel/aluminum powder additive[J].Journal of Materials Engineering,2017,45(9):123-128.
[11] 汪汀. 钛/钢复合板反应釜筒体的焊接工艺[J]. 材料开发与应用,2003,18(2):15-18. WANG D. Weldability and welding procedure of titanium clad steel plate for the manufacture of a reaction vessel[J]. Development and Application of Materials,2003,18(2):15-18.
[12] ASKARI A,DAS S. Practical numerical analysis of a crack near a weld subjected to primary loading and hydrogen embrittlement[J]. Journal of Materials Processing Technology,2005,173(1):1-13.
[13] 杜泽裕. X80管线钢焊接性分析[J]. 电焊机,2009,5(2):47-51. DU Z Y. Weldability of X80 alloy steel pipeline[J]. Electric Welding Machine,2009,5(2):47-51.
[14] 梁小林,许希武,林智育. 复合材料层板低速冲击后疲劳性能实验研究[J]. 材料工程,2016,44(12):100-106. LIANG X L,XU X W,LIN Z Y. Fatigue performance of composite laminates after low-velocity impact[J].Journal of Materials Engineering,2016,44(12):100-106.
[15] 于九明,孝云祯,王群骄. 金属层状复合技术及其新进展[J]. 材料研究学报,2000,14(1):12-16. YU J M,XIAO Y Z,WANG Q J. New development of technology of clad metal[J]. Chinese Journal of Materials Research,2000,14(1):12-16.
[16] 周国顺. 钛管和钛钢复合管板的制造技术浅析[J]. 中国化工装备,2008,10(4):22-23. ZHOU G S. The analysis for the manufacturing techniques of titanium tube and titanium clad tube sheet[J]. China Chemical In-dustry Equipment,2008,10(4):22-23.
[17] 缪林久. 钛及其合金焊接缺陷的产生及防止[J]. 大众科技,2006(3):58-59. MIAO L J. The produce and prevent of weld defects of titanium and its alloys[J]. Popular Science & Technology,2006(3):58-59.
[18] SANG Y S,BYOUNGCHUL H,SUNGHAK L,et al. Correlation of microstructure and Charpy impact properties in API X70 and X80 line-pipe steels[J]. Mater Sci Eng,2007,458(15):281-289.
[19] GHOST M,CHATTERJEE S. Characterization of transition joint of commercially pure titanium to 304 stainless steels[J]. Materials Characterization,2002,48(2):393-399.
[20] 孔令然. X80管线钢的研究与应用[J]. 科技情报开发与经济,2011,21(1):120-135. KONG L R. The research and application of X80 pipeline steel[J]. Sci-Tech Information Development & Economy,2011,21(1):120-135.
[21] 礼宾,王核源,张舒庆,等. Ti、B微量元素对焊缝金属韧性的影响[J]. 机械工程材料,2003,27(1):32-34. LI B,WANG H Y,ZHANG S Q,et al. Effect of trace elements Ti, B on toughness of welded metal[J]. Materials for Mechanical Engineering,2003,27(1):32-34.
[22] 杜则裕,张德勤,田志凌. 低碳低合金钢焊缝金属的显微组织及其影响因素[J]. 钢铁,1999,34(5):67-71. DU Z Y,ZHANG D Q,TIAN Z L. Microstructure of weld metal of low-carbon and low-alloy steels and influencing factors[J]. Iron and Steel,1999,34(5):67-71.
[23] EVANS G M. The effect of carbon on the microstructure and properties of C-Mn all-weld metal deposits[J]. Welding Journal,1983,62(11):313-334.
[24] JORGE J,SOUZA L,REBELLO J. The effect of chromium on the microstructure toughness relationship of C-Mn weld metal deposits[J]. Materials Characterization,2001,47(5):195-202.
[1] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[2] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[3] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[4] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[5] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[6] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[9] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[13] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[14] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[15] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn