Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (5): 53-58    DOI: 10.11868/j.issn.1001-4381.2014.05.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
高应变率下AZ31镁合金焊接接头动态力学性能
毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南
沈阳工业大学 材料科学与工程学院, 沈阳 110870
Dynamic Mechanical Property of AZ31 Magnesium Alloy Welding Joint Under High Strain Rate
MAO Ping-li, XI Tong, LIU Zheng, DONG Yang, LIU Zun-xin, DI Jin-nan
School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
全文: PDF(4671 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用分离式Hopkinson压杆在应变速率为900~2500s-1范围内对轧制态AZ31镁合金氩弧焊(TIG)和搅拌摩擦焊(FSW)焊接接头进行了高速冲击压缩实验,利用金相显微镜和扫描电子显微镜对压缩后的接头组织和断口进行了观察。结果表明:随着应变速率的增大,合金的真应力-应变曲线变化不大,说明AZ31镁合金两种焊接接头对应变速率的敏感性较小;在高应变速率下FSW焊接接头的强度及塑性均优于TIG焊接接头;两种接头在高应变速率下的断裂方式均为解理断裂,但相对于TIG焊接接头,FSW焊接接头更加平整光滑;两种接头的显微组织对应变率均不敏感,并且在高应变率压缩下的变形方式相同,主要为滑移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毛萍莉
席通
刘正
董阳
刘遵鑫
邸金南
关键词 分离式Hopkinson压杆高应变速率AZ31镁合金氩弧焊搅拌摩擦焊解理断裂    
Abstract:The dynamic compression test was carried out for rolled AZ31 magnesium alloy welding joint of argon tungsten-arc welding (TIG) and friction stir welding (FSW) with the split Hopkinson pressure bar at the strain rates of 900-2500s-1. The microstructure and fracture mechanism of the specimens were analyzed by scanning electron microscope (SEM) and optical microscope. The results show that with the increasing of the strain rate, the true stress-strain curves of AZ31 magnesium alloy welding joint have little change, implying the stress of AZ31 welding joints is not sensitive to the strain rate. The strength and plasticity of FSW joint are better than those of TIG joint under high strain rate. The fracture mode of AZ31 welding joints is cleavage under high strain rate, but compared to TIG joint, the FSW joint fracture is more smooth. The deformation microstructure analysis demonstrates that the microstructure is not sensitive to the strain rate, and the deformation mechanism of AZ31 welding joints is slipping under high stain rate compression.
Key wordssplit Hopkinson pressure bar    high strain rate    AZ31 magnesium alloy    TIG    FSW    cleavage fracture
收稿日期: 2012-09-12      出版日期: 2014-05-20
中图分类号:  TG146.2+2  
基金资助:国家科技支撑计划项目-镁合金防护、连接与可靠性研究及评价(2011BAE22B05)
作者简介: 毛萍莉(1967- ),女,教授,博士,主要从事镁合金及其成形技术研究,联系地址:辽宁省沈阳市沈阳经济技术开发区沈辽西路111号沈阳工业大学材料学院(110870),E-mail:pinglimao@yahoo.com
引用本文:   
毛萍莉, 席通, 刘正, 董阳, 刘遵鑫, 邸金南. 高应变率下AZ31镁合金焊接接头动态力学性能[J]. 材料工程, 2014, 0(5): 53-58.
MAO Ping-li, XI Tong, LIU Zheng, DONG Yang, LIU Zun-xin, DI Jin-nan. Dynamic Mechanical Property of AZ31 Magnesium Alloy Welding Joint Under High Strain Rate. Journal of Materials Engineering, 2014, 0(5): 53-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.05.010      或      http://jme.biam.ac.cn/CN/Y2014/V0/I5/53
[1] 刘正,张奎,曾小勤. 镁基轻质合金理论基础及应用[M]. 北京: 机械工业出版社, 2002. 31-35.
[2] LUO A A. Recent magnesium alloy development for automotive powertrain applications[J]. Materials Science Forum, 2003,419-422: 57-66.
[3] LIU L M, WANG J F, SONG G. Hybrid laser TIG welding,laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy[J].Materials Science and Engineering: A, 2004, 381(1-2):129-133.
[4] 陈振华, 严红革, 陈吉华, 等. 镁合金[M]. 北京: 化学工业出版社, 2004.
[5] 周海, 丁成钢, 胡飞, 等. 不同电流下AZ31镁合金交流钨极氩弧焊焊接接头的显微组织与力学性能[J].机械工程材料, 2011,35(5):47-50.
ZHOU Hai, DING Cheng-gang, HU Fei, et al. Microstructure and mechanical properties of welded joint of AZ31 magnesium alloy AC-TIG welding with different currents[J]. Materials for Mechanical Engineering, 2011,35(5):47-50.
[6] 张福全, 王响群, 陈振华, 等. AZ31镁合金薄板的交流钨极氩弧焊[J].湖南大学学报: 自然科学版, 2004,31(6):9-12.
ZHANG Fu-quan, WANG Xiang-qun, CHEN Zhen-hua, et al. Gas tungsten arc of welded magnesium alloy AZ31 plates[J]. Journal of Hunan University: Natural Sciences, 2004,31(6):9-12.
[7] 彭建, 周绸, 潘复生. AZ61镁合金薄板TIG焊接头的组织和性能[J].热加工工艺, 2010,39(21):1-4.
PENG Jian, ZHOU Chou, PAN Fu-sheng. Microstructure and mechanical properties of welded joint of AZ61 magnesium alloy plates by TIG welding[J]. Hot Working Technology, 2010,39(21):1-4.
[8] SRINIVASAN P B, RIEKEHR S, BLAWERT C. Mechanical properties and stress corrosion cracking behaviour of AZ31 magnesium alloy laser weldments[J]. Transactions of Nonferrous Metals Society of China, 2011,21(1):1-8.
[9] FORCELLESE A, FRATINI L, GABRIELLI F, et al. Formability of friction stir welded AZ31 magnesium alloy sheets[J]. Materials Science Forum, 2010,638(1-2):1249-1254.
[10] CHOWDHURY S M, CHEN D L, BHOLE S D, et al. Tensile properties and strain-hardening behavior of double-sided arc welded and friction stir welded AZ31B magnesium alloy[J]. Materials Science and Engineering:A, 2010, 527(12):2951-2961.
[11] 苏允海, 刘政军, 王玉, 等. 外加磁场对AZ31镁合金焊接接头组织性能的影响[J].热加工工艺, 2006, 35(23):4-6. SU Yun-hai, LIU Zheng-jun, WANG Yu, et al. Effect of longitudinal magnetic field on microstructures and properties of welded joint of AZ31 magnesium alloy[J]. Hot Working Technology, 2006, 35(23):4-6.
[12] 胡时胜.霍普金森压杆技术[J].兵器材料科学与工程, 1991,(11):40-47. HU Shi-sheng. Hopkinson pressure bar technology[J]. Ordnance Material Science and Engineering, 1991, (11): 40-47.
[13] 毛萍莉, 刘正, 王长义. 高应变速率下AZ31B镁合金的压缩变形组织[J]. 中国有色金属学报, 2009, 19(5): 816-820. MAO Ping-li, LIU Zheng, WANG Chang-yi. Deformation microstructure of AZ31B magnesium alloy under high strain rate compression[J]. The Chinese Journal of Nonferrous Metals, 2009, 19(5): 816-820.
[14] WATANABE H, ISHIKAWA K. Effect of texture on high temperature deformation behavior at high strain rates in a Mg-3Al-1Zn alloy[J].Materials Science and Engineering: A, 2009, 523(1-2):304-311.
[15] YANG Y B, WANG F C, TAN C W, et al. Plastic deformation mechanisms of AZ31 magnesium alloy under high strain rate compression[J].Transactions of Nonferrous Metals Society of China, 2008,18(5):1043-1046.
[1] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[2] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[3] 李文亚, 曹聪聪, 杨夏炜, 徐雅欣. 冷喷涂复合加工制造技术及其应用[J]. 材料工程, 2019, 47(11): 53-63.
[4] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[5] 刘军, 张金玲, 渠治波, 于彦冲, 许并社, 王社斌. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46(6): 73-79.
[6] 张亮亮, 王希靖, 刘骁. 6082铝合金搅拌摩擦焊焊接过程中晶粒取向演化[J]. 材料工程, 2018, 46(10): 55-59.
[7] 孙颖迪, 陈秋荣. AZ31镁合金管材挤压成型数值模拟与实验研究[J]. 材料工程, 2017, 45(6): 1-7.
[8] 王文, 李天麒, 乔柯, 徐瑞琦, 王快社. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45(10): 32-38.
[9] 李静, 曹睿, 毛高军, 刘东升, 陈剑虹. 不同热输入下F460钢焊接粗晶热影响区韧脆转变的内在机理[J]. 材料工程, 2016, 44(8): 70-76.
[10] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[11] 宋广胜, 陈强强, 徐勇, 李娟, 张士宏. AZ31镁合金室温拉伸微观变形机制EBSD原位跟踪研究[J]. 材料工程, 2016, 44(4): 1-8.
[12] 王昌盛, 熊江涛, 李京龙, 李鹏, 张赋升, 杨俊. 2024铝合金搅拌摩擦焊焊缝区疲劳过程中的温度演变[J]. 材料工程, 2015, 43(9): 53-59.
[13] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[14] 张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
[15] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn