Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (8): 55-60    DOI: 10.11868/j.issn.1001-4381.2014.08.011
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
外加电位对X80钢在玉门土壤模拟溶液中应力腐蚀的影响
程远1,2, 俞宏英2, 王莹1,2, 孙冬柏1,2
1. 北京科技大学 国家材料服役安全科学中心, 北京 100083;
2. 北京科技大学 腐蚀与防护中心, 北京 100083
Effects of Potential on Stress Corrosion Cracking of X80 Steel in Yumen Simulated Soil Solution
CHENG Yuan1,2, YU Hong-ying2, WANG Ying1,2, SUN Dong-bai1,2
1. National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China;
2. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(5479 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用慢应变速率拉伸实验研究X80钢在土壤模拟溶液中的应力腐蚀敏感性。以玉门地区的碱性土壤为基础,分析不同电位对应力腐蚀的影响。用扫描电镜对断口及二次裂纹形貌进行观察。结果表明:阳极电位下X80钢应力腐蚀敏感性不高。高阳极电位下,阳极溶解在一定程度上抑制了应力腐蚀。阳极电位较弱以及开路电位下,阳极溶解较弱,裂尖和其他表面存在溶解性差异,这些因素有利于裂纹扩展。但是较慢的溶解速率以及相对高的应变速率使得裂纹没有足够时间发生有效扩展,应力腐蚀敏感性仍然较低。当外加阴极电位时,裂尖发生阳极溶解而其他位置受到阴极反应抑制,应力腐蚀敏感性增加。随着阴极电位降低,不断增加的氢影响裂纹萌生和扩展,应力腐蚀敏感性随外加电位的降低而增大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程远
俞宏英
王莹
孙冬柏
关键词 X80钢应力腐蚀慢应变速率拉伸电位    
Abstract:The stress corrosion cracking (SCC) susceptibility of X80 pipeline steel was investigated in simulated soil solution using slow strain rate tensile (SSRT) tests. Based on the alkaline soil in Yumen, the effect of potential on SCC was analyzed. Fracture surfaces and secondary cracks morphologies were observed using scanning electron microscopy (SEM). The results show that, there are low SCC susceptibilities at anodic potential. Anodic dissolution at higher anodic potential restricts the SCC. At lower anodic potential and OCP, anodic dissolution is weak. The difference of dissolution between crack tip and other surfaces exist. These facts benefit the crack propagation. Nevertheless, there are not enough time for the effective growth of the cracks because of slow dissolution rate and relative high strain rate. Therefore, the SCC susceptibilities are also low. When the cathodic potential is applied, anodic dissolution at the crack tip and cathodic reaction happened on other surfaces is restrained. This difference of dissolution increases the SCC susceptibility. When the cathodic potential decreases, more and more hydrogen affects the initiation and growth of crack. The SCC susceptibility increases with the decreasing of cathodic potential.
Key wordsX80 steel    stress corrosion    slow strain rate tensile(SSRT)    potential
收稿日期: 2012-07-31     
1:  TG172.9  
基金资助:中国石油天然气股份有限公司科学研究与技术开发项目资助(2009110031001035)
通讯作者: 程远(1983-),男,博士,从事材料的腐蚀与防护、应力腐蚀方面的研究工作,联系地址:北京科技大学国家材料服役安全科学中心(100083),E-mail:chengyuan621@sina.com     E-mail: chengyuan621@sina.com
引用本文:   
程远, 俞宏英, 王莹, 孙冬柏. 外加电位对X80钢在玉门土壤模拟溶液中应力腐蚀的影响[J]. 材料工程, 2014, 0(8): 55-60.
CHENG Yuan, YU Hong-ying, WANG Ying, SUN Dong-bai. Effects of Potential on Stress Corrosion Cracking of X80 Steel in Yumen Simulated Soil Solution. Journal of Materials Engineering, 2014, 0(8): 55-60.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.08.011      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I8/55
[1] 庄传晶,冯耀荣,霍春勇.国内X80级管线钢的发展及今后的研究方向[J].焊管,2005,28(2):10-14.ZHUANG C J,FENG Y R,HUO C Y. The development and its future research direction of grade X80 pipeline steel in China[J].Welded Pipe and Tube,2005,28(2):10-14.
[2] CHENG Y F. Fundamentals of hydrogen evolution reaction and its implications on near-neutral pH stress corrosion cracking of pipelines[J].Electrochimica Acta,2007,52(7):2661-2667.
[3] MANFREDI C,OTEGUI J L. Failures by SCC in buried pipelines[J].Engineering Failure Analysis,2002,9(5):495-509.
[4] KENTISH P J.Gas pipeline failures: australian experience[J]. Corrosion,1985,20(3):139-146.
[5] FANG B Y,ATRENS A,WANG J Q. Review of stress corrosion cracking of pipeline steels in "low" and "high" pH solutions[J].Journal of Material Science,2003,38(1):127-132.
[6] ASAHI H, KUSHIDA T, KIMURA M, et al. Role of microstructures on stress corrosion cracking of pipeline steels in carbonate-bicarbonate solution[J].Corrosion,1999,55(7):644-652.
[7] GU B,LUO J L,MAO X. Hydrogen-facilitated anodic dissolution-type stress corrosion cracking of pipeline steels in near-neutral pH solution[J].Corrosion,1999,55(1):96-106.
[8] 方丙炎,王俭秋,朱自勇,等.埋地管道在近中性pH和高pH环境中的应力腐蚀开裂[J].金属学报,2001,37(5):453-458.FANG B Y,WANG J Q,ZHU Z Y, et al. The stress corrosion cracking of buried pipelines in near-neutral-pH and high-pH solutions[J].Acta Metallurgica Sinica,2001,37(5):453-458.
[9] GU B,LUO J L,MAO X. Transgranular stress corrosion cracking of X-80 and X-52 pipeline steels in dilute aqueous solution with near-neutral pH[J].Corrosion,1999,55(3):312-318.
[10] WANG J Q,ATRENS A.SCC initiation for X65 pipeline steel in the high pH carbonate/bicarbonate solution[J].Corrosion Science,2003,45(10):2199-2217.
[11] ZHOU J L,LI X G,DU C W,et al. Anodic electrochemical behavior of X80 pipeline steel in NaHCO3 solution[J].Acta Metallurgica Sinica,2010,46(2):251-256.
[12] LIU Z Y,ZHAI G L,LI X G,et al. Effect of deteriorated microstructures on stress corrosion cracking of X70 pipeline steel in acidic soil environment[J].Journal of University of Science and Technology Beijing,2008,15(6):707-713.
[13] LIANG P, DU C W, LI X G, et al. Effect of hydrogen on the stress corrosion cracking behavior of X80 pipeline steel in Ku'erle soil simulated solution[J].International Journal of Minerals,Metallurgy and Materials,2009,16(4):407-413.
[14] ZHANG L, LI X G, DU C W, et al. Effect of applied potentials on stress corrosion cracking of X70 pipeline steel in alkali solution[J].Materials and Design,2009,30(6):2259-2263.
[15] LIANG P,LI X G,DU C W,et al. Stress corrosion cracking of X80 pipeline steel in simulated alkaline soil solution[J].Materials and Design,2009,30(5):1712-1717.
[1] 章淑芳, 王晓敏, 陈辉, 廖潇垚. 7003铝合金动车柜体的应力腐蚀开裂[J]. 材料工程, 2015, 43(7): 105-112.
[2] 郝文魁, 刘智勇, 马岩, 杜翠薇, 李晓刚, 胡山山. 不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J]. 材料工程, 2015, 43(3): 28-34.
[3] 周峰, 吴开明. 超快冷工艺对高铌X80管线钢抗腐蚀性能的影响[J]. 材料工程, 2015, 43(2): 67-72.
[4] 朱敏, 刘智勇, 杜翠薇, 李晓刚, 王丽叶. 交流电对X80钢在酸性土壤环境中腐蚀行为的影响[J]. 材料工程, 2015, 43(2): 85-90.
[5] 杨东平, 胥聪敏, 罗金恒, 王珂, 李辉辉. 0.8设计系数用X80管线钢在近中性pH溶液中的应力腐蚀开裂行为[J]. 材料工程, 2015, 43(1): 89-95.
[6] 刘瑛, 张品芳, 陈兰君, 张合, 张新明, 耿占吉. 预析出对2519A铝合金局部腐蚀性能的影响[J]. 材料工程, 2014, 0(6): 11-17.
[7] 杜楠, 叶超, 田文明, 赵晴. 304不锈钢点蚀行为的电化学阻抗谱研究[J]. 材料工程, 2014, 0(6): 68-73.
[8] 辛星, 张新明, 刘胜胆, 宋丰轩, 陈彬. 回归再时效中预时效温度对7050铝合金应力腐蚀性能的影响[J]. 材料工程, 2014, 0(5): 29-34.
[9] 刘亚虎, 蔡雪原, 朱延超, 张琳娇, 杨建红. 纳米碳化硅颗粒的团聚及分散的研究进展[J]. 材料工程, 2013, 0(9): 84-90.
[10] 佘欢, 疏达, 储威, 王俊, 孙宝德. Fe和Si杂质元素对7×××系高强航空铝合金组织及性能的影响[J]. 材料工程, 2013, 0(6): 92-98.
[11] 程远, 俞宏英, 王莹, 孟旭, 孙冬柏. 应变速率对X80管线钢应力腐蚀的影响[J]. 材料工程, 2013, 0(3): 77-82.
[12] 张晓云, 梅克力, 熊文华, 郭孟秋, 高健. 7A52铝合金焊接件应力腐蚀性能评价[J]. 材料工程, 2013, 0(10): 86-92,97.
[13] 李建平, 姜洪锋, 毛大恒, 曾立帮. 轧制变形量对铸轧铅合金板带性能的影响[J]. 材料工程, 2012, 0(4): 17-21.
[14] 刘亚娟, 吕祥鸿, 赵国仙, 陈长风, 薛艳. 超级13Cr马氏体不锈钢在入井流体与产出流体环境中的腐蚀行为研究[J]. 材料工程, 2012, 0(10): 17-21,47.
[15] 王莹, 俞宏英, 程远, 单海涛, 孙冬柏. X80钢在不同土壤模拟溶液中的腐蚀行为[J]. 材料工程, 2012, 0(1): 25-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn