Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (9): 57-62    DOI: 10.11868/j.issn.1001-4381.2014.09.010
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
Fe-Cr-B-C堆焊合金的组织与耐磨性
王智慧1, 万国力2, 贺定勇1, 蒋建敏1, 崔丽1
1. 北京工业大学 材料科学与工程学院, 北京 100124;
2. 北汽福田汽车股份有限公司, 北京 102206
Microstructures and Wear Resistance of Fe-Cr-B-C Hardfacing Alloys
WANG Zhi-hui1, WAN Guo-li2, HE Ding-yong1, JIANG Jian-min1, CUI Li1
1. College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2. Beiqi Foton Motor Co., Ltd., Beijing 102206, China
全文: PDF(3945 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用药芯焊丝气体保护堆焊方法制备Fe-Cr-B-C堆焊合金,利用金相、SEM、XRD等方法,分析了不同硼含量对堆焊合金组织及硼化物形貌的影响。结果表明:Fe-12Cr-xB-0.1C合金的显微组织由铁素体+奥氏体+(Fe,Cr)2B+(Fe,Cr)23(B,C)6组成。当硼含量<3%(质量分数,下同)时,随着硼含量增加,硼化物形态逐渐由断续网状转变为网状;当硼含量≥3%时,随着硼含量增加,初生块状(Fe,Cr)2B数量逐渐增加,其尺寸和分布更均匀,硼化物主要呈块状、条状、鱼骨状、蜂窝状及菊花状分布。初晶(Fe,Cr)2B近似呈四边形柱状体,趋向垂直于堆焊层表面生长。当硼含量≤4%时,硼的增加能显著提高Fe-Cr-B-C堆焊合金的硬度及耐磨性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王智慧
万国力
贺定勇
蒋建敏
崔丽
关键词 堆焊合金显微组织硼化物磨粒磨损    
Abstract:Fe-Cr-B-C hardfacing alloys were deposited by flux-cored wire using metal active gas arc welding (MAG). The effect of boron contents on the microstructures and boride morphologies of the hardfacing alloys was analyzed by optical microscopy(OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results indicate that the microstructures of Fe-12Cr-xB-0.1C alloys consist of ferrite, austenite, (Fe, Cr)2B, and (Fe, Cr)23(B, C)6. The morphology of borides transforms from the discontinuous network to continuous network gradually with boron content increasing to 3% (mass fraction). As the boron content is higher than 3%, the amount of massive primary (Fe, Cr)2B increases with the increasing of boron contents. Meanwhile, the size and distributing of (Fe, Cr)2B become more homogeneous. The morphology of primary boride has many kinds of distribution shape, including massive, strip, fish-bone-like, honeycomb and chrysanthemum. The shape of the primary (Fe, Cr)2B is quadrangular column which tends to grow perpendicular to the overlayer surfaces. Increasing boron content can significantly improve the hardness and abrasive wear resistance of Fe-Cr-B-C hardfacing alloys when the boron content is lower than 4%.
Key wordshardfacing alloy    microstructure    boron    boride    abrasive wear
收稿日期: 2013-01-18     
1:  TG422.3  
基金资助:北京市教委科技成果转化与产业化项目(JP009012201401)
通讯作者: 王智慧(1956- ),男,教授级高工,主要从事堆焊、异种钢焊接接头组织与性能及纳米复合吸波材料的研究工作,联系地址:北京市朝阳区平乐园100号北京工业大学材料科学与工程学院(100124)     E-mail: zhwang@bjut.edu.cn
引用本文:   
王智慧, 万国力, 贺定勇, 蒋建敏, 崔丽. Fe-Cr-B-C堆焊合金的组织与耐磨性[J]. 材料工程, 2014, 0(9): 57-62.
WANG Zhi-hui, WAN Guo-li, HE Ding-yong, JIANG Jian-min, CUI Li. Microstructures and Wear Resistance of Fe-Cr-B-C Hardfacing Alloys. Journal of Materials Engineering, 2014, 0(9): 57-62.
链接本文:  
http://jme.biam.ac.cn/jme/CN/10.11868/j.issn.1001-4381.2014.09.010      或      http://jme.biam.ac.cn/jme/CN/Y2014/V0/I9/57
[1] BUCHELY M F, GUTIERREZ J C, LE'ON L M, et al. The effect of microstructure on abrasive wear of hardfacing alloys[J]. Wear, 2005, 259(1-6): 52-61.
[2] WANG Z H, WANG Q B, CUI L. Influence of cooling rate and composition on orientation of primary carbides of Fe-Cr-C hardfacing alloys[J]. Science and Technology of Welding and Joining, 2008, 13(7): 656-672.
[3] LU L M, SODA H, MCLEAN A. Microstructure and mechanical properties of Fe-Cr-C eutectic composites[J]. Materials Science and Engineering: A, 2003, 347(1):214-222.
[4] KIM J H, HONG H S, KIM S J. Effect of boron addition on the cavitation erosion resistance of Fe-based hardfacing alloy[J]. Materials Letters, 2007, 61(4-5): 1235-1237.
[5] DWIVEDI D K. Microstructure and abrasive wear behaviour of iron base hardfacing[J]. Materials Science and Technology, 2004, 20(10):1326-1330.
[6] 王智慧,贺定勇,王月琴. 硼对Fe-Cr-C耐磨堆焊合金组织的影响[J]. 材料工程, 2001,(10): 18-20.WANG Zhi-hui, HE Ding-yong, WANG Yue-qin. Influence of boron contents on the microstructures of Fe-Cr-C hardfacing alloy [J]. Journal of Materials Engineering, 2001, (10): 18-20.
[7] SCANDELLA F, SCANDELLA R. Development of hardfacing material in Fe-Cr-Nb-C system for use under highly abrasive conditions[J]. Materials Science and Technology, 2004, 20(2):93-105.
[8] 叶荣昌, 葛长路. 硼对堆焊合金组织与性能的影响[J]. 热加工工艺, 1998, (3): 19-20.YE Rong-chang, GE Chang-lu. The influence of boron on the microstructure and properties of the surfaced alloy[J].Hot Working Technology, 1998, (3): 19-20.
[9] LIU Z L, CHEN X, LI Y X, et al. High boron iron-based alloy and its modification[J]. Journal of Iron and Steel Research International,2009, 16(3): 37-42.
[10] 龚建勋, 李丹, 肖逸锋,等. Fe-Cr-B-C 堆焊合金的显微组织及耐磨性[J]. 材料热处理学报, 2010, 31(3): 18-20. GONG Jian-xun, LI Dan, XIAO Yi-feng, et al. Microstructure and wear resistance of Fe-Cr-B-C hardfacing alloys[J].Transactions of Materials and Heat Treatment,2010, 31(3): 18-20.
[11] GUO C Q, KELLY P M. Boron solubility in Fe-Cr-B cast irons[J]. Materials Science and Engineering: A, 2003, 352(1-2): 40-45.
[12] BERNS H, FISCHER A. Microstructure of Fe-Cr-C hardfacing alloys with additions of Nb, Ti and B[J]. Materials Characterization, 1997, 39(2): 499-527.
[13] FAN C, CHEN M C, CHANG C M, et al. Microstructure change caused by (Cr,Fe)23C6 carbides in high chromium Fe-Cr-C hardfacing alloys[J]. Surface & Coatings Technology, 2006, 201(3-4):908-912.
[14] KIM J H, KO K H, NOH S D, et al. The effect of boron on the abrasive wear behavior of austenitic Fe-based hardfacing alloys [J]. Wear, 2009, 267(9):1415-1419.
[15] JANKANSKAS V, KREIVAITIS R, MILCIUS D, et al. Analysis of abrasive wear performance of arc welded hard layers[J]. Wear, 2008, 265 (11-12):1026-1032.
[1] 刘伟, 曹腊梅, 王岭, 徐彩虹, 益小苏. RTM成型工艺对Cf/SiBCN陶瓷基复合材料性能的影响[J]. 材料工程, 2015, 43(6): 1-6.
[2] 雷玉成, 龚晨诚, 罗雅, 肖波, 朱强. 激励电流对MGH956合金原位合金化TIG焊接头性能的影响[J]. 材料工程, 2015, 43(2): 7-13.
[3] 冯广杰, 李卓然, 朱洪羽, 徐慨. SiC陶瓷真空钎焊接头显微组织和性能[J]. 材料工程, 2015, 43(1): 1-5.
[4] 邵长斌, 熊江涛, 孙福, 张赋升, 李京龙. TC4钛合金与YG8硬质合金高频感应钎焊组织及性能研究[J]. 材料工程, 2014, 0(9): 26-31.
[5] 张盼, 叶凌英, 顾刚, 蒋海春, 张新明. 5A90铝锂合金超塑性变形的组织演变及变形机理[J]. 材料工程, 2014, 0(9): 51-56.
[6] 周静怡, 赵文侠, 郑真, 曲士昱, 贾新云, 郑运荣. 硼含量对IC10高温合金凝固行为的影响[J]. 材料工程, 2014, 0(8): 90-96.
[7] 王彬, 薛文斌, 金小越, 吴杰, 华铭, 吴正龙. Q235低碳钢等离子体电解硼碳共渗处理及性能分析[J]. 材料工程, 2014, 0(6): 28-34.
[8] 初雅杰, 李晓泉, 吴申庆, 徐振钦, 杜舜尧. 热压形变参数对AZ31镁合金接头微观组织和力学性能的影响[J]. 材料工程, 2014, 0(6): 35-39.
[9] 田俊, 薛顺, 吴铖川, 成国光, 周国治, 王文虎, 盛伟. 弹簧钢热处理前后显微组织对抗腐蚀性能的影响[J]. 材料工程, 2014, 0(4): 18-25.
[10] 徐秀国, 许崇海, 方斌, 王春林, 衣明东. TiB2/WC/h-BN自润滑陶瓷材料的制备及力学性能[J]. 材料工程, 2014, 0(4): 63-67.
[11] 王少华, 马志锋, 张显峰, 孙刚, 冯朝辉, 李伟, 陆政. Al-Zn-Mg-Cu-Zr-0.5Er合金型材组织性能研究[J]. 材料工程, 2014, 0(3): 27-33.
[12] 马秀萍, 李超. 铸造过热度和热处理对CoCrMo合金显微组织的影响[J]. 材料工程, 2014, 0(3): 66-70.
[13] 程秀, 胡树兵, 宋武林, 李振. 球墨铸铁的等离子束表面强化研究[J]. 材料工程, 2014, 0(1): 12-18.
[14] 耿波, 张路, 范念青, 夏志新, 刘江南. 水蒸气温度和流量对T91钢氧化行为的影响[J]. 材料工程, 2014, 0(1): 52-57.
[15] 卢金文, 葛鹏, 赵永庆. Mo对Ti-Mo系合金显微组织的影响及其强化效应[J]. 材料工程, 2013, 0(9): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn