Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (12): 11-17    DOI: 10.11868/j.issn.1001-4381.2014.12.002
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
搅拌摩擦焊接全过程热力耦合有限元模型
崔俊华1,2, 柯黎明1,2, 刘文龙2, 郭正华2, 赵刚要2, 方平2
1. 西北工业大学 材料学院 摩擦焊接陕西省重点实验室, 西安 710072;
2. 南昌航空大学 轻合金加工科学与技术国防重点学科实验室, 南昌 330063
Thermo-mechanical Coupled Finite Element Model for Whole Process of Friction Stir Welding
CUI Jun-hua1,2, KE Li-ming1,2, LIU Wen-long2, GUO Zheng-hua2, ZHAO Gang-yao2, FANG Ping2
1. Shaanxi Key Laboratory of Friction Welding Technologies, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
全文: PDF(4768 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用ALE网格自适应技术及相应边界条件处理,建立搅拌摩擦焊接全过程(下压阶段和稳定焊接阶段)热力耦合有限元模型.采用6061铝合金焊件验证模型.结果表明:整个焊接过程温度场最高温度在463℃左右,低于材料熔点;稳定焊接6s后,焊件后方横截面上等效塑性应变区近似呈"V"形分布,前进边侧变形程度较返回边侧剧烈,变形范围更大.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔俊华
柯黎明
刘文龙
郭正华
赵刚要
方平
关键词 搅拌摩擦焊接全过程有限元模型温度场塑性变形场    
Abstract:With ALE(Arbitrary Lagrangian-Eulerian) mesh adaptive technique and proper management of corresponding boundary conditions, thermo-mechanical coupled finite element model of whole process of friction stir welding (including under pressure stage and stable welding stages) was established. The model was tested by a 6061 aluminum alloy weldment. The results show that the highest temperature of the whole process temperature field is about 463℃, under its melting point. At 6s of stable welding stage, the plastic deformation field distribution on the cross section behind the tool looks like a V shape, the degree of deformation and the deformation region at the advancing side is more intensely and larger than that at the retreating side.
Key wordsfriction stir welding    whole process    finite element model    temperature field    plastic deformation field
收稿日期: 2012-11-09      出版日期: 2014-12-20
中图分类号:  TG456.9  
基金资助:国家自然科学基金资助项目(51265043);航空科学基金资助项目(2010ZE56018);轻合金加工科学与技术国防重点学科实验室开放基金资助项目(gf200901003,gf201001005)
通讯作者: 柯黎明(1960-),男,教授,博导,主要研究方向为搅拌摩擦焊、扩散焊、钎焊、高温自蔓延合成焊接技术以及焊接过程的数值模拟,联系地址:江西省南昌市丰和南大道696号南昌航空大学航空制造工程学院(330034)     E-mail: liming_ke@126.com
引用本文:   
崔俊华, 柯黎明, 刘文龙, 郭正华, 赵刚要, 方平. 搅拌摩擦焊接全过程热力耦合有限元模型[J]. 材料工程, 2014, 0(12): 11-17.
CUI Jun-hua, KE Li-ming, LIU Wen-long, GUO Zheng-hua, ZHAO Gang-yao, FANG Ping. Thermo-mechanical Coupled Finite Element Model for Whole Process of Friction Stir Welding. Journal of Materials Engineering, 2014, 0(12): 11-17.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.12.002      或      http://jme.biam.ac.cn/CN/Y2014/V0/I12/11
[1] THOMAS W M, NICHOLAS E D, NEEDHAM J C, et al. Friction Stir Welding[P].UK Patent:9125978.8,1991-12-06.
[2] SCHMIDT H, HATTEL J. A local model for the thermo mechanical conditions in friction stir welding[J]. Modelling and Simulation in Materials Science and Engineering,2005,13(1):77-93.
[3] XU S, DENG X. A three dimensional model for the friction stir welding process[A].CD-ROM Proceedings of the 21st Southeastern Conference on Theoretical and Applied Mechanics (SECTAM XXI)[C].Orlando,Florida:University of Central Florida,2002.699-704.
[4] 张昭,别俊. 搅拌摩擦焊接过程数值仿真的完全热力耦合模型[J]. 中国机械工程,2008,19(10):1240-1245.ZHANG Z, BIE J. Fully coupled thermo-mechanical model for numerical simulation of friction stir welding process[J].Chinese Journal of Mechanical Engineering,2008,19(10):1240-1245.
[5] 鄢东洋,史清宇,吴爱萍,等.搅拌摩擦焊接的热力耦合分析模型[J]. 机械工程学报,2010,46(16):106-112.YAN D Y, SHI Q Y, WU A P, et al. Developmental thermal-mechanical coupled analysis model for friction stir welding[J].Journal of Mechanical Engineering,2010,46(16):106-112.
[6] GUO Z H, ZHAO G Y, KE L M, et al. Thermo-mechanical coupled analysis of deformation behavior in friction stir welding process of aluminum 7075 plate with conical pin[J]. Advanced Materials Research,2011,338:618-621.
[7] MANDAL S, RICE J, ELMUSTAFA A A. Experimental and numerical investigation of the plunge stage in friction stir welding[J].Journal of Materials Processing Technology,2008,203(1-3):411-419.
[8] HAMILTON R,MACKENZIE D, LI H J. Multi-physics simulation of friction stir welding process[J]. Engineering Computations,2010,27(8):967-985.
[9] YU M, LI W Y, LI J L, et al. Modeling of entire friction stir welding process by explicit finite element method[J]. Materials Science and Technology,2012,28(7):812-817.
[10] JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strains rates, temperatures and pressures[J].Engineering Fracture Mechanics,1985,21(1):31-48.
[11] ZHANG Z, CHEN J T. Computational investigations on reliable finite element-based thermo-mechanical coupled simulations of friction stir welding[J]. Adv Manuf Technol,2011,60(9-12):959-975.
[12] 张昭,张洪武.接触模型对搅拌摩擦焊接数值模拟的影响[J].金属学报,2008,44(1):85-90. ZHANG Z, ZHANG H W. Effect of contact model on numerical simulation of friction stir welding[J].Acta Metallurgica Sinica,2008,44(1):85-90.
[13] McCLURE J C, FENG Z, TANG W, et al. A thermal model of friction stir welding. Proc 5th Int Conf on Trends in Welding Research. Pine Mountain:ASM International,1998.590-595.
[14] KHANDKAR M Z H,KHAN J A, REYNOLDS A P. A thermal model of the friction stir welding process. ASME International Mechanical Engineering Congress & Exposition.New Orleans,Louisiana:ASME,2002.115-124.
[15] 柯黎明.搅拌摩擦焊接头成形规律研究[D]. 北京:清华大学,2007. KE L M. An investigation on the formation mechanism of the friction stir welds[D]. Beijing:Tsinghua University,2007.
[16] XU S, DENG X. A study of texture patterns in friction stir welds[J]. Acta Materialia,2008,56(6):1326-1341.
[1] 孙卫青, 程伟. 基于响应面全局优化技术的蜂窝板材料性能参数修正[J]. 材料工程, 2019, 47(5): 159-166.
[2] 王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
[3] 张亮, 吴文恒, 卢林, 倪晓晴, 何贝贝, 杨启云, 祝国梁, 顾芸仰. 激光选区熔化热输入参数对Inconel 718合金温度场的影响[J]. 材料工程, 2018, 46(7): 29-35.
[4] 宋清华, 肖军, 文立伟, 王显峰, 范珏雯, 石甲琪. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1): 83-91.
[5] 任维彬, 董世运, 徐滨士, 任君华, 郑显柱, 童继凤. 连续/脉冲激光再制造FeCrNiCu合金成形层温度场研究[J]. 材料工程, 2017, 45(5): 1-6.
[6] 秦文真, 赵军, 李安海. 铝合金活塞铸造过程中模具易失效区域预测[J]. 材料工程, 2017, 45(2): 60-64.
[7] 王文, 李天麒, 乔柯, 徐瑞琦, 王快社. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45(10): 32-38.
[8] 郝亚鑫, 王文, 徐瑞琦, 乔柯, 李天麒, 王快社. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6): 70-75.
[9] 张昭, 吴奇, 张洪武. 转速对搅拌摩擦焊接搅拌区晶粒尺寸影响[J]. 材料工程, 2015, 43(7): 1-7.
[10] 张杰, 闫志峰, 王文先, 王志斌, 王凯, 张红霞, 张心保. 拉-拉循环载荷下443铁素体不锈钢产热规律及疲劳性能预测[J]. 材料工程, 2015, 43(2): 79-84.
[11] 陈玲, 宇文晅晅, 钟蜀津, 解锦婷. 确定金属型铸造界面传热系数方法的研究[J]. 材料工程, 2012, 0(3): 17-21.
[12] 谢洪吉, 李嘉荣, 金海鹏, 刘世忠, 熊继春. DD6单晶高温合金导向叶片定向凝固过程数值模拟[J]. 材料工程, 2011, 0(11): 58-61,67.
[13] 刘雪峰, 马胜军, 刘锦平, 谢建新. Cu-12%Al合金高温压缩变形过程本构关系的BP神经网络模型[J]. 材料工程, 2009, 0(1): 10-14.
[14] 杨治立, 陈登明, 廖道瀚. 铝镍钴定向凝固过程的模拟研究[J]. 材料工程, 2009, 0(1): 46-49.
[15] 张昭, 陈金涛, 张洪武. 搅拌头尺寸变化对搅拌摩擦焊接的影响[J]. 材料工程, 2006, (1): 19-23,31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn