Please wait a minute...
 
材料工程  2014, Vol. 0 Issue (12): 23-27    DOI: 10.11868/j.issn.1001-4381.2014.12.004
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
不同Ti含量的W-Ti-N复合膜的微结构及性能研究
赵淑芳, 喻利花, 马冰洋, 许俊华
江苏科技大学 先进焊接技术江苏省重点实验室, 江苏 镇江 212003
Study on Microstructure and Properties of W-Ti-N Composite Films with Different Titanium Content
ZHAO Shu-fang, YU Li-hua, MA Bing-yang, XU Jun-hua
Jiangsu Key Laboratory of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, Jiangsu, China
全文: PDF(2053 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用多靶反应磁控溅射技术制备一系列不同Ti含量的W-Ti-N复合膜.采用X射线衍射仪、扫描电镜、纳米压痕仪等检测方法对薄膜的微结构和力学性能进行表征.采用UMT-2功能摩擦试验机,在室温、大气环境、无润滑的条件下对W-Ti-N复合膜的摩擦性能进行评价, 同时,探讨薄膜的致硬机理和摩擦机制.结果表明:Ti含量(原子分数,下同)为5%~23.48%时,薄膜硬度处于峰值区,硬度值最高可达39GPa,摩擦因数在0.4左右.当Ti含量高于23.48%时,硬度随着Ti含量增加而下降,摩擦因数随Ti含量的增加而升高.
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵淑芳
喻利花
马冰洋
许俊华
关键词 磁控溅射W-Ti-N复合膜微结构力学性能摩擦性能    
Abstract:W-Ti-N composite films with different titanium content were fabricated by reactive magnetron sputtering technique. The microstructure and mechanical properties of films were characterized by XRD,SEM and CSM. Tribological performance of the films was tested on UMT-2 multifunctional tribometer in the condition of room temperature,atmosphere environment and without lubrication. At the same time, the mechanisms of hardness enhancement and friction were also discussed. The results show that, at titanium content (atom fraction) of 5%-23.48%, the hardness of the film is in the peak area,and the maximums hardness is up to 39GPa,friction coefficient is about 0.4. When the Ti content is higher than 23.48%, the hardness decreases with increasing of the titanium content. In addition, the friction coefficient increases.
Key wordsmagnetron sputtering    W-Ti-N composite film    microstructure    mechanical property    tribological property
收稿日期: 2012-08-14      出版日期: 2014-12-20
1:  TG174.44  
基金资助:国家自然科学基金资助项目(51074080);江苏省自然科学基金资助项目(BK2008240)
通讯作者: 许俊华(1962-),男,教授,研究方向:主要从事纳米科学与技术、薄膜材料物理和化学以及薄膜磁性材料等领域的研究工作,联系地址:江苏省镇江市京口区梦溪路2号江苏科技大学材料学院(212003)     E-mail: jhxu@just.edu.cn
引用本文:   
赵淑芳, 喻利花, 马冰洋, 许俊华. 不同Ti含量的W-Ti-N复合膜的微结构及性能研究[J]. 材料工程, 2014, 0(12): 23-27.
ZHAO Shu-fang, YU Li-hua, MA Bing-yang, XU Jun-hua. Study on Microstructure and Properties of W-Ti-N Composite Films with Different Titanium Content. Journal of Materials Engineering, 2014, 0(12): 23-27.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2014.12.004      或      http://jme.biam.ac.cn/CN/Y2014/V0/I12/23
[1] HU J C, CHANG T C. Characterization of multilayered Ti/TiN films grown by chemical vapor deposition[J]. Thin Solid Films, 1998,332(1-2):423-427.
[2] ARIS D F, AIANGO Y C, DEVIA A. Characterization of bilayer coatings of TIN/ZrN grown using pulsed arc PAPVD[J]. App Surf Sci,2005,252(4):1175-1181.
[3] HUANG J H, YANG H C, GUO X J, et al. Preparation and characterization of ZrNx film deposition using the pulsed reactive magnetron sputtering[J].Surf Coat Technol, 2005,195:204-213.
[4] 孔明, 赵文济, 乌晓燕, 等. TiN/Si3N4纳米晶复合膜的微结构和强化机制[J]. 无机材料学报,2007,(3):539-544.KONG Ming, ZHAO Wen-ji, WU Xiao-yan, et al. Microstructure and mechanical properties of TiN/Si3N4 nanocomposite films[J]. Journal of Inorganic Materials,2007,(3):539-544.
[5] KELESOGLU E, MITTERER C, KAZMANLI M K, et al. Microstructure and properties of nitride and diboride hard coatings deposited under intense mild-energy ion bombardment[J].Surf Coat Tech,1999,116-119:133-140.
[6] WU D, ZHANG Z, FU W, et al. Structure, electrical and chemical properties of zirconium nitride films deposited by dc reactive magnetron sputtering[J].Appl Phys A,1997,64(6):593-595.
[7] SUE J A, CHANG T P. Friction and wear behavior of titanium nitride, zirconium nitride and chromium nitride coatings at elevated temperature[J]. Surf Coat Tech,1995,76-77:61-69.
[8] SAKAMOTO I, MARUNO S, JIN P. Preparation and microstructure of reactively sputtered Ti1-xZrxN film[J].Thin Solid Films,1993,228:169-179.
[9] MEI F H, DONG Y S,LI Y R,et al.Microstructure and mechanical properties of (Ti,A1)(O,N) films synthesized by reactive sputtering[J].Materials Letters,2006,60:375-378.
[10] JIANG N,SHEN Y G, ZHANG H T, et al. Superhard nanocomposite Ti-Al-Si-N films deposited by reactive unbalanced magnetron sputtering[J].Material Science and Engineering B, 2006,135(1):1-9.
[11] MATTHES B, BROSZEIT E, KLOOS K H. Tribological behavior and corrosion performance of Ti-B-N hard coatings under plastic manufacturing conditions[J].Surface and Coatings Technology,1993,57(2-3):97-104.
[12] 农尚斌, 喻利花, 许俊华. Ti-Si-N复合膜的微结构及性能研究[J].表面技术,2008,37(2):45-49. NONG Shang-bin, YU Li-hua, XU Jun-hua. Microstructure and properties of Ti-Si-N nano-composites deposited by magnetron sputtering[J].Surface Technology,2008,37(2):45-49.
[13] 董松涛,喻利花,董师润,等. 磁控共溅射制备锆-硅-氮复合薄膜的显微组织与性能[J].机械工程材料,2008,32(9):54-58. DONG Song-tao, YU Li-hua, DONG Shi-run, et al. Microstructure and properties of Zr-Si-N composite films prepared by reactive magnetron co-sputtering[J].Materials for Mechanical Engineering,2008,32(9):54-58.
[14] YU B H, WANG C L, SONG X Y. Structural stability and mechanical property of WN from first-principles calculations [J]. J Alloy Compd,2009,487(1-2):556-559.
[15] OSPINA R, CASTILLO H A, BENAVIDES V, et al. Influence of the annealing temperature on a crystal phase of W/WC bilayers grown by pulsed arc discharge[J].Vacuum, 2006,81(3):373-377.
[16] UEKUBO M, OKU T, NII K, et al. WNx diffusion barriers between Si and Cu[J].Thin Solid Films,1996,286(1-2):170-175.
[17] 王明霞, 肖楠,李德军. 薄膜的合成及其结构和性能的研究[J].功能材料,2008,39(增刊):391-393. WANG Ming-xia, XIAO Nan, LI De-jun. A study of synthesis, structure and property of WTiN coatings[J]. Journal of Functional Materials,2008,39(Suppl):391-393.
[18] RAMAROTAFIKA H, LEMERIERE G. Influence of a d.c. substrate bias on the resistivity, composition,crystallites size and microstrain of WTi and WTiN films[J].Thin Solld Films,1995,266(2):267-273.
[19] CAVALEIRO A, TRINDADE B, VIEIRA M T. Influence of Ti addition on the properties of W-Ti-C/N sputtered fllms[J].Surface and Coatings,2003,174-175:68-75.
[20] 喻利花,薛安俊,董松涛,等. Si含量对Ti-Al-Si-N 薄膜微结构与力学性能的影响[J].材料热处理学报,2010,31(7):140-145. YU Li-hua, XUE An-jun, DONG Song-tao, et al. Influence of Si content on microstructure and mechanical property of Ti-Al-Si-N films[J]. Transactions of Materials and Heat Treatment, 2010,31(7):140-145.
[21] 汪蕾,董师润,尤建飞,等.Ti(C,N)复合膜和TiN/Ti(C,N)多层膜组织和显微硬度[J].材料热处理学报,2010,31(2):113-118. WANG Lei, DONG Shi-run, YOU Jian-fei, et al. Microstructure and microhardness of Ti(C,N) and TiN/Ti(C,N) multilayer films[J]. Transactions of Materials and Heat Treatment, 2010,31(2):113-118.
[22] BULL S J, BHAT D G, STAIA M H. Properties and performance of commercial TiCN coatings. part 2:tribological performance[J].Surface and Coatings Technology,2003,163-164:507-514.
[23] LOURO C, CAVALEIRO A. Hardness versus structure in W-Si-N sputtered coatings[J].Surf Coat Technol,1999,116-119(1):74-80.
[24] 徐哲,席慧智,阮霞,等.磁控溅射TiN薄膜工艺参数对显微硬度的影响[J].应用科技,2007,34(5):1-3. XU Zhe, XI Hui-zhi, RUAN Xia, et al. The influence of magnetron sputtering TiN films processing parameters on microhardness[J].Applied Science and Technology,2007,34(5):1-3.
[25] POLCAR T, PARREIRA N M G, CAVALEIRO A. Tribological characterization of tungsten nitride coatings deposited by reactive magnetron sputtering[J].Wear,2007,262(5-6):655-665.
[26] MENG Jun-hu, LU Jin-jun, WANG Jing-bo, et al. Tribological behavior of TiCN-based cermets at elevated temperatures[J]. Materials Science and Engineering,2006,418(1-2):68-76.
[27] SILVA P N, DIAS J P, CAVALEIRO A. Tribological behaviour of W-Ti-N sputtered thin films[J]. Surface & Coatings Technology,2005,200(1-4):186-191.
[1] 王婧, 任会兰, 郝莉, 宁建国. 多孔钛材料的动态力学响应研究[J]. 材料工程, 2015, 43(9): 87-93.
[2] 林翠, 赵晴, 文庆杰. TC1钛合金的腐蚀加工及其对基体性能影响[J]. 材料工程, 2015, 43(7): 48-55.
[3] 李龙, 祝志超, 张心金, 刘会云. 利用控轧控冷技术开发热轧不锈钢复合板的实验研究[J]. 材料工程, 2015, 43(7): 62-67.
[4] 江陆, 孙新军, 李昭东, 雍岐龙, 王长军. 两相区回火温度对Mn-Mo系微合金钢亚稳奥氏体形成及力学性能的影响[J]. 材料工程, 2015, 43(5): 1-7.
[5] 万同, 杨光瑞, 张婕, 王彪. 柠檬酸醚酯增塑剂的合成及增塑聚乳酸[J]. 材料工程, 2015, 43(5): 67-74.
[6] 刘铭, 汝继刚, 臧金鑫, 张坤, 何维维, 王亮, 陈高红. 新型Al-Zn-Mg-Cu铝合金热稳定性研究[J]. 材料工程, 2015, 43(4): 13-18.
[7] 马彦, 陈朝辉. 1800℃热处理对PIP法C/SiC复合材料结构和性能的影响[J]. 材料工程, 2015, 43(4): 98-101.
[8] 傅田, 李文亚, 杨夏炜, 李锦锋, 高大路. 搅拌摩擦点焊技术及其研究现状[J]. 材料工程, 2015, 43(4): 102-114.
[9] 彭建, 彭毅, 韩韡, 潘复生. 挤压温度对Mg-2Zn-Mn-0.5Nd镁合金组织和性能的影响[J]. 材料工程, 2015, 43(3): 23-27.
[10] 张同环, 周仕学, 牛海丽, 肖成柱, 王乃飞. 碳助磨制备纳米镁铝储氢合金的结构及储氢性能研究[J]. 材料工程, 2015, 43(3): 48-53.
[11] 刘正, 董阳, 毛萍莉, 于金程. 轧制AZ31镁合金板材(4mm)动态压缩性能与失效行为[J]. 材料工程, 2015, 43(2): 61-66.
[12] 马豪, 李岩, 王迪, 陆超. 固化温度对亚麻纤维及其增强复合材料力学性能的影响[J]. 材料工程, 2015, 43(10): 14-19.
[13] 赵东阳, 刘伟, 沙江波. 放电等离子烧结制备Nb-Si-Ti-Al-Hf-Cr合金的显微组织及力学性能[J]. 材料工程, 2015, 43(10): 20-27.
[14] 王丙军, 王晓民, 喇培清. 烧结温度对20% ZrO2(3Y)/Al2O3复相陶瓷力学性能和微观结构的影响[J]. 材料工程, 2015, 43(10): 66-72.
[15] 王其磊. 磁性MH/Fe3O4/SR复合材料的耐热机理及摩擦性能[J]. 材料工程, 2015, 43(10): 73-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn