Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (7): 91-96    DOI: 10.11868/j.issn.1001-4381.2015.000582
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
2D-C/SiC复合材料偏轴拉伸力学行为研究
王波(), 吴亚波, 郭洪宝, 贾普荣, 李俊
西北工业大学 力学与土木建筑学院, 西安 710072
Investigation on Off-axis Tensile Mechanical Behaviors of 2D-C/SiC Composites
Bo WANG(), Ya-bo WU, Hong-bao GUO, Pu-rong JIA, Jun LI
School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(3115 KB)   HTML ( 9 )  
输出: BibTeX | EndNote (RIS)      
摘要 

通过对2D-C/SiC复合材料试件进行不同偏轴角度的拉伸实验,研究了偏轴角度对材料拉伸力学特性的影响。通过应变片分别测得了材料加载方向和纤维束方向上的应力-应变行为,对比分析了偏轴角度对上述应力-应变行为的影响;并结合试件断口扫描电镜照片,阐释了纤维束方向上拉伸和剪切损伤间的相互耦合效应。实验结果表明,材料的拉伸模量和强度随偏轴角度的增大出现明显下降;材料纤维束方向上的拉伸损伤和剪切损伤具有显著的相互促进作用。最后,以材料0°拉伸和45°拉伸实验数据为基础,建立了材料的偏轴拉伸应力-应变行为预测模型,模型预测结果与实验结果吻合较好。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王波
吴亚波
郭洪宝
贾普荣
李俊
关键词 2D-C/SiC复合材料偏轴拉伸应力-应变行为损伤耦合预测模型    
Abstract

The off-axis tensile mechanical behaviors of 2D-C/SiC composite laminates were obtained by tests under different off-axis angles, and the influence of off-axis angle on the tensile mechanical behaviors was studied. By sticking strain gauges on the surfaces of specimens, the stress-strain behaviors in the loading direction and in the fiber bundle directions of material were obtained and analyzed. Combined with the SEM (scanning electron microscope) results of fractured surfaces on specimens, the coupling effects between tensile and shear damage in the fiber bundle directions were also analyzed. Test results show that the tensile modulus and strength of material decrease significantly with increasing off-axis angle; and there exists obvious mutual effect between tensile and shear damage in fiber bundle orientation. Furthermore, based on the stress-strain data obtained from 0° and 45° tensile tests, a predictive model was built to predict the off-axis tensile stress-strain behaviors of material. The prediction has good agreement with test data.

Key words2D-C/SiC composites    off-axis tension    stress-strain behavior    damage coupling    predictive model
收稿日期: 2015-05-11      出版日期: 2017-07-21
中图分类号:  O34  
  TB332  
基金资助:西北工业大学超高温结构复合材料国防重点实验室创新基金(6142911050116)
通讯作者: 王波     E-mail: b.wang@nwpu.edu.cn
作者简介: 王波(1976-), 男, 副教授, 博士, 主要从事复合材料及其结构的力学行为研究, 联系地址:陕西省西安市友谊西路127号西北工业大学118信箱(710072), E-mail:b.wang@nwpu.edu.cn
引用本文:   
王波, 吴亚波, 郭洪宝, 贾普荣, 李俊. 2D-C/SiC复合材料偏轴拉伸力学行为研究[J]. 材料工程, 2017, 45(7): 91-96.
Bo WANG, Ya-bo WU, Hong-bao GUO, Pu-rong JIA, Jun LI. Investigation on Off-axis Tensile Mechanical Behaviors of 2D-C/SiC Composites. Journal of Materials Engineering, 2017, 45(7): 91-96.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000582      或      http://jme.biam.ac.cn/CN/Y2017/V45/I7/91
Fig.1  偏轴拉伸试件材料纤维束分布方向和应变片粘贴方式
Fig.2  不同偏轴角度下材料x-y方向拉伸应力-应变曲线
Fig.3  偏轴拉伸状态下材料L-T主方向上的应力状态
Fig.4  偏轴拉伸状态下材料L-T主方向上的应力-应变曲线
(a)θ=15°;(b)θ=30°;(c)θ=45°
Fig.5  不同偏轴角度下偏轴拉伸试件断口电镜扫描照片
(a)θ=0°;(b)θ=15°;(c)θ=30°;(d)θ=45°
Fig.6  偏轴拉伸状态下轴向应力下降差值σxθ示意图
E0/MPa E45/MPa v0 GLT/GPa[16]
142.06 102.05 0.07 37.34
Table 1  预测模型所需参数数值
Fig.7  材料偏轴拉伸x-y方向上应力-应变行为预测
(a)θ=15°;(b)θ=30°
1 邹武, 张康助, 张立同. 陶瓷基复合材料在火箭发动机上的应用[J]. 固体火箭技术, 2000, 23 (2): 60- 64.
1 ZOU W , ZHANG K Z , ZHANG L T . Application of ceramic matrix composite to rocket motor[J]. Journal of Solid Rocket Technology, 2000, 23 (2): 60- 64.
2 张建艺. 陶瓷基复合材料在喷管上的应用[J]. 宇航材料工艺, 2000, 30 (4): 14- 16.
2 ZHANG J Y . Ceramic matrix composite application in nozzle[J]. Aerospace Materials and Technology, 2000, 30 (4): 14- 16.
3 李刚. 二维编织Cf/SiC复合材料力学性能的试验研究[D]. 西安: 西北工业大学, 2007.
3 LI G. Experimental study on mechanical property of 2-D woven C/SiC ceramic Mmatrix composites[D]. Xi'an: Northwestern Polytechnical University, 2007.
4 方光武, 高希光, 宋迎东. 针刺C/SiC复合材料拉-压疲劳特性与失效机理[J]. 材料工程, 2016, 44 (11): 78- 82.
doi: 10.11868/j.issn.1001-4381.2016.11.013
4 FANG G W , GAO X G , SONG Y D . Tension-compression fatigue behavior and failure mechanism of needled C/SiC composite[J]. Journal of Materials Engineering, 2016, 44 (11): 78- 82.
doi: 10.11868/j.issn.1001-4381.2016.11.013
5 徐立新, 管厚兵, 杨智伟, 等. 真空吸浆法制备C/SiC复合材料及力学性能研究[J]. 材料工程, 2015, 43 (12): 10- 16.
doi: 10.11868/j.issn.1001-4381.2015.12.003
5 XU L X , GUAN H B , YANG Z W , et al. Preparation and mechanical property of C/SiC composite by vacuum infusion method[J]. Journal of Materials Engineering, 2015, 43 (12): 10- 16.
doi: 10.11868/j.issn.1001-4381.2015.12.003
6 李俊, 矫桂琼, 王波. 平纹编织C/SiC复合材料层合板面内力学性能的可设计性研究[J]. 机械强度, 2012, 34 (2): 229- 233.
6 LI J , JIAO G Q , WANG B . Designable in-plane mechanical property of plain-woven C/SiC composite laminate[J]. Journal of Mechanical Strength, 2012, 34 (2): 229- 233.
7 甄文强, 王波, 李潘, 等. 平纹编织C/SiC复合材料层合板偏轴拉伸性能研究[J]. 机械强度, 2014, 36 (6): 856- 861.
7 ZHEN W Q , WANG B , LI P , et al. Study on off-axis tensile properties of plain-woven C/SiC composites[J]. Journal of Mechanical Strength, 2014, 36 (6): 856- 861.
8 NOZAWA T , OZAWA K , CHOI Y , et al. Determination and prediction of axial/off-axial mechanical properties of SiC/SiC composites[J]. Fusion Engineering and Design, 2012, 87 (5-6): 803- 807.
doi: 10.1016/j.fusengdes.2012.02.026
9 WEIGEL N , KRÖPLIN B , DINKLER D . Micromechanical modeling of damage and failure mechanisms in C/C-SiC[J]. Computational Materials Science, 1999, 16 (1-4): 120- 132.
doi: 10.1016/S0927-0256(99)00054-3
10 GENIN G M , HUTCHINSON J W . Composite laminates in plane stress: constitutive modeling and stress redistribution due to matrix cracking[J]. J Am Ceram Soc, 1997, 80 (5): 1245- 1255.
11 BASTE S . Inelastic behaviour of ceramic-matrix composites[J]. Composites Science and Technology, 2001, 61 (15): 2285- 2297.
doi: 10.1016/S0266-3538(01)00122-1
12 CAMUS G . Modelling of the mechanical behavior and damage processes of fibrous ceramic matrix composites: application to a 2-D SiC/SiC[J]. International Journal of Solids and Structures, 2000, 37 (6): 919- 942.
doi: 10.1016/S0020-7683(99)00065-7
13 CADY C , HEREDIA F E , EVANS A G . In-plane mechanical properties of several ceramic-matrix composites[J]. J Am Ceram Soc, 1995, 78 (8): 2065- 2078.
doi: 10.1111/jace.1995.78.issue-8
14 管国阳, 矫桂琼, 张增光. 平纹编织C/SiC复合材料的剪切性能[J]. 机械科学与技术, 2005, 24 (5): 515- 517.
14 GUAN G Y , JIAO G Q , ZHANG Z G . In-plane shear fracture characteristics of plain-woven C/SiC composite[J]. Mechanical Science and Technology, 2005, 24 (5): 515- 517.
15 杨成鹏, 矫桂琼, 王波. 2D-C/SiC复合材料的单轴拉伸力学行为及其强度[J]. 力学学报, 2011, 43 (2): 330- 337.
doi: 10.6052/0459-1879-2011-2-lxxb2009-717
15 YANG C P , JIAO G Q , WANG B . Uniaxial tensile stress-strain behavior and strength of plain woven C/SiC composite[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43 (2): 330- 337.
doi: 10.6052/0459-1879-2011-2-lxxb2009-717
16 李俊. 二维C/SiC复合材料非线性本构关系研究[D]. 西安: 西北工业大学, 2014.
16 LI J. Research on the nonlinear constitutive relationship of 2D C/SiC composites[D]. Xi'an: Northwestern Polytechnical University, 2014.
[1] 汪雅婷, 黎俊良, 袁楷峰, 陈广义. 基于GA改进BP神经网络预测热变形流变应力模型的建立[J]. 材料工程, 2022, 50(6): 170-177.
[2] 郭洪宝, 洪智亮, 李开元, 梅文斌. 2D-C/SiC复合材料轴向加载泊松效应[J]. 材料工程, 2021, 49(8): 178-183.
[3] 郭洪宝, 谢骏. 2D-SiC/SiC复合材料损伤耦合力学行为[J]. 材料工程, 2019, 47(10): 160-165.
[4] 王波, 吴亚波, 黄喜鹏, 潘文革, 成来飞. 2D-C/SiC复合材料面内剪切性能统计及强度B基准值[J]. 材料工程, 2019, 47(1): 131-138.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn