Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 30-37    DOI: 10.11868/j.issn.1001-4381.2015.000808
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
Al-Ti体系原位合成Al3Ti/ADC12复合材料
熊俊杰, 闫洪
南昌大学 机电工程学院, 南昌 330031
In-situ Al3Ti/ADC12 Composites Synthesized from Al-Ti System
XIONG Jun-jie, YAN Hong
School of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(12447 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在超声场下,以Al-Ti为反应体系,采用熔体直接反应法原位合成Al3Ti/ADC12复合材料。研究Ti加入量、超声时间以及功率对复合材料的显微组织和力学性能的影响。结果表明:随着超声功率的逐渐增加,Al3Ti颗粒尺寸变得愈加细小,分布也变得更为均匀;并且Ti的加入能够细化基体组织中的α-Al相,使其由原来的粗大树枝状逐渐转变为细小枝晶状、蔷薇状甚至近球状。然而,随着超声时间的增加,超声效果会出现先加强后减弱的趋势。Al3Ti/ADC12复合材料的力学性能变化趋势与其组织变化趋势相一致,当Ti添加量为3%(质量分数)、超声功率为1.5kW、超声频率为20kHz、超声时间为6min时,其综合性能较好,抗拉强度达到247.34MPa,伸长率达到2.31%,比未施加超声的复合材料分别提高了21.3%和50.0%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
熊俊杰
闫洪
关键词 超声原位合成Al3Ti/ADC12微观组织力学性能    
Abstract:Aluminum matrix composites reinforced by in-situ Al3Ti particles were successfully synthesized from an Al-Ti system via a direct melt reaction. The influences of Ti additions, ultrasonic time and power on the microstructure and mechanical property of composites were systematically investigated. The results show that the Al3Ti particles are refined obviously and the distribution also becomes more uniform with the increase of ultrasonic power. Meanwhile, the addition of Ti refines the α-Al dendrite phases in the matrix, which gradually changes from the original coarse to fine branch crystals, rose-like or nearly spherical. However, results also show that the size of Al3Ti particles decreases to a minimum value and then increases with the increase of ultrasonic time. The trends of the mechanical properties are consistent with the microstructures of the Al3Ti/ADC12 composites. The optimum parameters of the composite are 3%Ti (mass fraction) content, 1.5kW ultrasonic power, 20kHz ultrasonic frequency and 6min ultrasonic time. Accordingly, the tensile strength and elongation of the composite synthesized reach to 247.34MPa and 2.31% respectively, increasing by 21.3% and 50.0% compared with the unmodified alloy.
Key wordsultrasound    in-situ synthesis    Al3Ti/ADC12    microstructure    mechanical property
收稿日期: 2015-06-27      出版日期: 2017-08-10
中图分类号:  TB331  
通讯作者: 闫洪(1962-),男,教授,博士生导师,从事新材料及其成型技术方面的研究工作,联系地址:江西省南昌市红谷滩新区学府大道999号(330031),E-mail:yanhong_wh@163.com     E-mail: yanhong_wh@163.com
引用本文:   
熊俊杰, 闫洪. Al-Ti体系原位合成Al3Ti/ADC12复合材料[J]. 材料工程, 2017, 45(8): 30-37.
XIONG Jun-jie, YAN Hong. In-situ Al3Ti/ADC12 Composites Synthesized from Al-Ti System. Journal of Materials Engineering, 2017, 45(8): 30-37.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.000808      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/30
[1] DYZIA M,SLEZIONA J.Aluminium matrix composites reinforced with AlN particles formed by in situ reaction[J].Archives of Materials Science and Engineering,2008,31(1):17-20.
[2] CHEN T J,LI J,HAO Y.Microstructures and corrosion properties of casting in situ Al3Ti-Al composites[J].Rare Metals,2010,29(1):78-85.
[3] 许辰苏,吴洁琼,章鹏,等.搅拌摩擦加工对原位TiB2/7075复合材料性能的影响[J].材料研究学报,2013,27(2):197-201. XU C S,WU J Q,ZHANG P,et al.Effect of friction stir processing on properties of in situ TiB2/7075 composite[J].Chinese Journal of Materials Research,2013,27(2):197-201.
[4] 闫洪,张发云.颗粒增强复合材料制备与触变塑性成形[M].北京:国防工业出版社,2013. YAN H,ZHANG F Y.Synthesis of Particulate Reinforced Composites and Thixotropic Plastic Forming[M].Beijing:National Defense Industry Press,2013.
[5] 龙伟民,路全彬,何鹏,等.钎焊过程原位合成Al-Si-Cu合金及接头性能[J].材料工程,2016,44(6):17-23 LONG W M,LU Q B,HE P,et al.In Situ synthesis of Al-Si-Cu alloy during brazing process and mechanical property of brazing joint[J].Journal of Materials and Engineering,2016,44(6):17-23.
[6] DAS A,KOTADIA H R.Effect of high-intensity ultrasonic irradiation on the modification of solidification microstructure in a Si-rich hypoeutectic Al-Si alloy[J].Materials Chemistry and Physics,2011,125(3):853-859.
[7] 周小亮,陈刚,季鹏飞,等.原位Al2O3颗粒增强铝基复合材料的高能超声制备及性能研究[J].功能材料,2014,6(45):06131-06135. ZHOU X L,CHEN G,JI P F,et al.Study on the ultrasonic fabrication and property of in situ Al2O3 particle reinforced aluminum matrix composites[J].Journal of Functional Materials,2014,6(45):06131-06135.
[8] ZHANG S L,DONG X W,ZHAO Y T,et al.Preparation and wear properties of TiB2/Al-30Si composites via in-situ melt reactions under high-energy ultrasonic field[J].Transactions of Nonferrous Metals Society of China,2014,(12):3894-3900.
[9] LIU Z W,HAN Q Y,LI J G.Fabrication of in situ Al3Ti/Al composites by using ultrasound assisted direct reaction between solid Ti powders and liquid Al[J].Powder Technology,2013,247:55-59.
[10] CHEN D B,ZHAO Y T,ZHU H Y,et al.Microstructure and mechanism of in-situ Al2O3(p)/Al nano-composites synthesized by sonochemistry melt reaction[J].Transactions of Nonferrous Metals Society of China,2012,(1):36-41.
[11] BRAMFITT B L.The effect of carbide and nitride additions on the hetero-geneous nucleation behavior of liquid iron[J].Matallurgical Transactions,1970,1(7):1-9.
[12] COLINET C,PASTUREL A.Ab initio calculation of the formation energies of L12,D022,D023 and one dimensional long period structures in TiAl3 compound[J].Intermetallics,2002,10(8):751-764.
[13] 王俊,陈锋,孙宝德.高能超声在制备颗粒增强金属基复合材料中的作用[J].上海交通大学学报,1999,33(7):814-816. WANG J,CHEN F,SUN B D.Effects of high intensity ultrasonic during MMCp fabrication[J].Journal of Shanghai Jiao Tong University,1999,33(7):814-816.
[14] 黄文先,闫洪.高能超声与稀土钇复合作用对AZ91铸态组织的影响[J].稀有金属材料与工程,2013,42(11):2346-2350. HUANG W X,YAN H.Effect of addition of Y with ultrasonic field assistance on as-cast microstructure of AZ91 alloy[J].Rare Metal Materials and Engineering,2013,42(11):2346-2350.
[15] PATEL B,CHAUDHARI G P,BHINGOLE P P.Microstructural evolution in ultrasonicated AS41 magnesium alloy[J].Materials Letters,2012,66:335-338.
[16] 潘金生.材料科学基础[M].北京:清华大学出版社,1998. PAN J S.Fundamentals of Material Science[M].Beijing:Tsinghua University Press,1998.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[4] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[5] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[6] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[7] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[8] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[9] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[10] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[11] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[12] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[13] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[14] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[15] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn