Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (5): 52-58    DOI: 10.11868/j.issn.1001-4381.2015.001194
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
HIPS/HDPE共混物的动态黏弹行为与相形态
刘晶如, 夏阳阳, 高力群, 俞强
常州大学 材料科学与工程学院, 江苏 常州 213164
Dynamic Viscoelastic Behavior and Phase Morphology of HIPS/HDPE Blends
LIU Jing-ru, XIA Yang-yang, GAO Li-qun, YU Qiang
School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
全文: PDF(4006 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用动态流变测试和扫描电子显微镜技术,考察高抗冲聚苯乙烯(HIPS)/高密度聚乙烯(HDPE)共混物的动态黏弹行为与相形态,对比1%(质量分数,下同)的纳米和微米CaCO3对HIPS/HDPE(30/70)不相容共混物的增容效果。结果表明:当HDPE小于30%时,HIPS/HDPE共混物在低频区的复数黏度和储存模量均显示出明显的正偏差,而当HDPE大于30%时,则呈现负偏差;前者与HDPE和PB粒子间的相互作用相关,而后者归因于HDPE基体与PS分散相之间较弱的界面相互作用。当HIPS为基体时,HDPE分散相粒子呈现较宽的尺寸分布;而当HDPE为基体时,PS分散相呈现双模尺寸分布,对应于两种不同类型的PS分散相粒子的存在。1%的纳米CaCO3对HIPS/HDPE(30/70)不相容共混体系起到了一定的增容效果,CaCO3纳米粒子主要位于HIPS/HDPE相界面以及HDPE连续相内;而微米CaCO3对该共混体系仅起到了增黏而非增容作用,CaCO3微米粒子仅位于HDPE连续相内。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘晶如
夏阳阳
高力群
俞强
关键词 高抗冲聚苯乙烯高密度聚乙烯共混动态黏弹行为相形态增容剂    
Abstract:The dynamic viscoelastic behavior and phase morphology of high impact polystyrene (HIPS)/high density polyethylene (HDPE) blends were investigated by dynamic rheological test and scanning electron microscopy (SEM). The compatibilizing effect of 1%(mass fraction, same as below) micron-CaCO3 and nano-CaCO3 on HIPS/HDPE(30/70) immiscible blend was compared. The results indicate that the complex viscosity and storage modulus of HIPS/HDPE blends at low frequencies show positive deviation from the mixing rule when HDPE is less than 30%, while negative deviation is observed when HDPE is more than 30%. The former is related to the interaction between HDPE and PB particles and the latter is attributed to the poor interfacial interaction between HDPE matrix and PS particles. When HIPS is the matrix phase, HDPE particles display broad size distribution. When HDPE acts as a matrix phase, PS dispersed phase exhibits bimodal size distribution corresponding to the presence of two different types of PS dispersed particles. 1% nano-CaCO3 has a certain compatibilizing effect on HIPS/HDPE(30/70) immiscible blend, which is mainly located at HIPS/HDPE interface and in the HDPE matrix, while micron-CaCO3 acts as viscosifier rather than compatibilizer, which is confined in the HDPE matrix.
Key wordshigh impact polystyrene (HIPS)    high density polyethylene (HDPE)    blend    dynamic viscoelastic behavior    phase morphology    compatibilizer
收稿日期: 2015-09-28      出版日期: 2017-05-17
中图分类号:  TQ327  
通讯作者: 刘晶如(1980-),女,讲师,博士,研究方向为高分子流变学,联系地址:江苏省常州市武进区滆湖路1号常州大学材料科学与工程学院(213164),E-mail:ruruliu1028@163.com     E-mail: ruruliu1028@163.com
引用本文:   
刘晶如, 夏阳阳, 高力群, 俞强. HIPS/HDPE共混物的动态黏弹行为与相形态[J]. 材料工程, 2017, 45(5): 52-58.
LIU Jing-ru, XIA Yang-yang, GAO Li-qun, YU Qiang. Dynamic Viscoelastic Behavior and Phase Morphology of HIPS/HDPE Blends. Journal of Materials Engineering, 2017, 45(5): 52-58.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001194      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/52
[1] MEKHILEF N, CARREAU P J, FAVIS B D, et al. Viscoelastic properties and interfacial tension of polystyrene-polyethylene blends [J]. Journal of Polymer Science Part B: Polymer Physics, 2000, 38(10): 1359-1368.
[2] LI J, FAVIS B D. Characterizing co-continuous high density polyethylene/polystyrene blends [J]. Polymer, 2001, 42(11): 5047-5053.
[3] HEINDL M, SOMMER M K, MUNSTEDT H. Morphology development in polystyrene/polyethylene blends during uniaxial elongational flow [J]. Rheologica Acta, 2004, 44(1): 55-70.
[4] FORTELNY I, SLOUF M, SIKORA A, et al. The effect of the architecture and concentration of styrene-butadiene compatibilizers on the morphology of polystyrene/low-density polyethylene blends [J]. Journal of Applied Polymer Science, 2006, 100(4): 2803-2816.
[5] TANG W, TANG J, YUAN H, et al. The compatibilization effect of ethylene/styrene interpolymer on polystyrene/polyethylene blends [J]. Journal of Polymer Science Part B: Polymer Physics, 2007, 45(16): 2136-2146.
[6] STARY Z, FORTELNY I, KRULIS Z, et al. Effect of the molecular structure of ethene-propene and styrene-butadiene copolymers on their compatibilization efficiency in low-density polyethylene/polystyrene blends [J]. Journal of Applied Polymer Science, 2008, 107(1): 174-186.
[7] ZHANG G, WANG Y, XING H, et al. Interplay between the composition of LLDPE/PS blends and their compatibilization with polyethylene-graft-polystyrene in the foaming behaviour [J]. RSC Advances, 2015, 5(34): 27181-27189.
[8] GUO Z, TONG L, XU Z, et al. Structure and properties of in situ compatibilized polystyrene/polyolefin elastomer blends [J]. Polymer Engineering and Science, 2007, 47(6): 951-959.
[9] 徐建平, 刘涛涛, 陈建定. F-C烷基化反应原位增容工艺对 PS/LLDPE合金结构与性能的影响[J]. 高分子材料科学与工程, 2011, 27(10): 101-105. XU J P, LIU T T, CHEN J D. Effect of in-situ compatibilization technique by friedel-crafts alkylation reaction on the structure and properties of PS/LLDPE blends [J]. Polymer Materials Science and Engineering, 2011, 27(10): 101-105.
[10] HONG J S, KIM Y K, AHN K H, et al. Interfacial tension reduction in PBT/PE/clay nanocomposite [J]. Rheologica Acta, 2007, 46(4): 469-478.
[11] KONG M, HUANG Y, CHEN G, et al. Retarded relaxation and breakup of deformed PA6 droplets filled with nanosilica in PS matrix during annealing [J]. Polymer, 2011, 52(22): 5231-5236.
[12] FERNANDES L L, FREITAS C A, DEMARQUETTE N R, et al. Photodegradation of thermodegraded polypropylene/high-impact polystyrene blends: mechanical properties [J]. Journal of Applied Polymer Science, 2011, 120(2): 770-779.
[13] HU Y, QI C, LIU W, et al. Characterization of the free volume in high-impact polystyrene/polypropylene and high-impact polystyrene/high-density polyethylene blends probed by positron annihilation spectroscopy [J]. Journal of Applied Polymer Science, 2003, 90(6): 1507-1514.
[14] CHIRAWITHAYABOON A, KIATKAMJORNWONG S. Compatibilization of high-impact polystyrene/high-density polyethylene blends by styrene/ethylene-butylene/styrene block copolymer [J]. Journal of Applied Polymer Science, 2004, 91(2): 742-755.
[15] FORTELNY I, MICHALKOVA D, HROMADKOVA J, et al. Effect of a styrene-butadiene copolymer on the phase structure and impact strength of polyethylene/high-impact polystyrene blends [J]. Journal of Applied Polymer Science, 2001, 81(3): 570-580.
[16] SULEIMAN M A, HUSSEIN I A, WILLIAMS M C. Rheological investigation of the influence of short chain branching and Mw of LDPE on the melt miscibility of LDPE/PP blends [J]. Open Macromolecules Journal, 2011, 5(1): 13-19.
[17] WU D, ZHANG Y, ZHANG M, et al. Phase behavior and its viscoelastic response of polylactide/poly (ε-caprolactone) blend [J]. European Polymer Journal, 2008, 44(7): 2171-2183.
[18] 申伟, 何鹏, 俞炜, 等. 介观相分离对等规聚丙烯/烯烃嵌段共聚物共混体系相容性的影响[J]. 高分子学报, 2014, (8): 1116-1123. SHEN W, HE P, YU W, et al. Effect of mesophase separation on the compatibility of iPP/olefin block copolymer blends [J]. Acta Polymerica Sinica, 2014, (8): 1116-1123.
[19] 黄真芝, 宋义虎, 谭业强, 等. MWCNTs与疏水纳米 SiO2填充PMMA/PS共混物的导电与动态流变行为[J]. 高分子学报, 2013, (1): 88-94. HUANG Z Z, SONG Y H, TAN Y Q, et al. Electrical conduction and dynamic rheology of multi-walled carbon nanotubes and hydrophobic nanosilica-filled immiscible poly(methylmethacrylate)/polystyrene blends [J]. Acta Polymerica Sinica, 2013, (1): 88-94.
[20] UTRACKI L A, KANIAL M R. Melt rheology of polymer blends [J]. Polymer Engineering and Science, 1982, 22(2): 96-114.
[21] UTRACKI L A. On the viscosity-concentration dependence of immiscible polymer blends [J]. Journal of Rheology, 1991, 35(8): 1615-1637.
[1] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[2] 马鹏飞, 王鑫, 李栋辉, 游峰, 江学良, 姚楚. 聚合物共混物增容技术及发展[J]. 材料工程, 2019, 47(2): 26-33.
[3] 童邵辉, 李东, 邓增辉, 方虎. 电子束快速成形TC4合金的组织与断裂性能[J]. 材料工程, 2019, 47(1): 125-130.
[4] 何聪, 欧宝立, 李政峰. 氧化石墨烯对聚丙烯/尼龙6两组分聚合物的增容作用[J]. 材料工程, 2017, 45(3): 13-16.
[5] 宋东福, 王顺成, 周楠, 农登, 郑开宏. Al-Si合金中富铁相形态及其影响因素研究进展[J]. 材料工程, 2016, 44(5): 120-128.
[6] 黄海滨, 马敬环, 赵孔银, 郑海燕, 刘莹, 周晓峰. 聚丙烯酸/聚丙烯复合塑料的制备及其阻垢性能[J]. 材料工程, 2016, 44(2): 43-48.
[7] 孙莉莉, 钟艳莉. 碳纳米纤维/高密度聚乙烯复合材料结晶行为和介电性能的研究[J]. 材料工程, 2013, 0(4): 17-22.
[8] 易回阳, 陈芳, 罗四清. HDPE/CB-MWNTs复合材料体系PTC效应[J]. 材料工程, 2008, 0(10): 43-45,49.
[9] 赵剑, 许忠斌, 冯连芳. PA6/PS双连续相的临界组分比及相形态研究[J]. 材料工程, 2006, 0(8): 36-39,44.
[10] 黄德进, 孙紫建, 王礼立. 高聚物材料动态本构关系对PP/PA共混物的应用研究[J]. 材料工程, 2006, 0(3): 3-5,10.
[11] 张艺, 许家瑞. 微观纤维增强高分子复合材料研究——分子复合材料的概念及其理论依据[J]. 材料工程, 2003, 0(8): 43-48.
[12] 张剑锋, 郑强, 曹苏华, 益小苏. 电子束辐照对高密度聚乙烯/炭黑导电复合材料电阻率的影响[J]. 材料工程, 1999, 0(2): 12-15,18.
[13] 贾志杰, 王正元, 梁吉, 魏秉庆, 吴德海, 张增民. PA6/碳纳米管复合材料的复合方法的研究[J]. 材料工程, 1998, 0(9): 3-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn