Please wait a minute...
 
2222材料工程  2017, Vol. 45 Issue (5): 127-134    DOI: 10.11868/j.issn.1001-4381.2015.001292
  综述 本期目录 | 过刊浏览 | 高级检索 |
电力电子中高频软磁材料的研究进展
刘君昌1, 梅云辉1,*(), 陆国权1,2
1 天津大学 材料科学与工程学院, 天津 300350
2 弗吉尼亚理工大学 材料科学与工程系, 弗吉尼亚 黒堡 24061
Development of High-frequency Soft Magnetic Materials for Power Electronics
Jun-chang LIU1, Yun-hui MEI1,*(), Guo-quan LU1,2
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Department of Materials Science and Engineering, Virginia Tech, Blacksburg 24061, Virginia, USA
全文: PDF(1173 KB)   HTML ( 24 )  
输出: BibTeX | EndNote (RIS)      
摘要 

随着电力电子行业的飞速发展,新型电磁材料的投入使用,对电子元器件的高频磁性能提出了新的要求。磁芯作为电子元器件的核心部件,其发展程度直接决定电子元器件的性能,这就要求具有优异高频软磁性能的材料发展。本文综述了四种软磁材料的发展历程,对每种软磁材料的优缺点进行了归纳总结,同时指出了未来的发展方向,并重点对近年来研究热门的软磁复合材料进行了梳理。粒径大小可控、包覆层对核层的包覆均匀程度以及从实验室走向产业化的大批量制备方法是未来高频软磁复合材料的发展趋势。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘君昌
梅云辉
陆国权
关键词 电力电子软磁材料高频低损低矫顽力    
Abstract

The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.

Key wordspower electronics    soft magnetic material    high-frequency low loss    low coercivity
收稿日期: 2015-10-29      出版日期: 2017-05-17
中图分类号:  TB33  
基金资助:国家高技术研究发展计划项目(2015AA034501);天津市重大科技专项(132CZDGX01106)
通讯作者: 梅云辉     E-mail: yunhui@tju.edu.cn
作者简介: 梅云辉(1985-), 男, 副教授, 博士, 研究方向为功率电子封装工艺及磁性材料的制备和成型工艺, 联系地址:天津市津南区海河教育园区天津大学材料学院31楼283(300350), E-mail:yunhui@tju.edu.cn
引用本文:   
刘君昌, 梅云辉, 陆国权. 电力电子中高频软磁材料的研究进展[J]. 材料工程, 2017, 45(5): 127-134.
Jun-chang LIU, Yun-hui MEI, Guo-quan LU. Development of High-frequency Soft Magnetic Materials for Power Electronics. Journal of Materials Engineering, 2017, 45(5): 127-134.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001292      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/127
Classification Advantage Disadvantage
Metal-matrix alloy Low cost,
high permeability,
high saturation magnetization,
used for low-frequency high-power
Low electrical resistivity,
low operating frequency,
high eddy-current loss at high frequencies
Soft ferrite High permeability,
high electrical resistivity,
high operating frequency
Low saturation magnetization
Amorphous and nanocrystalline Low coercivity,
high permeability,
high power density,
high strength and hardness,
wear-resistant and corrosion-resistant
High cost,
complex process,
bad thermostability,
Soft magnetic composite High electrical resistivity,
high operating frequency
Low permeability and low magnetic
flux density due to the magnetic dilution effect
Table 1  四种软磁材料的主要优缺点
Fig.1  软磁复合材料结构示意图
Fig.2  纯坡莫合金与84%复合材料的复数磁导率(a)和功率损耗密度对比(b)[51]
1 BAI H , MI C . Transients of Modern Power Electronics[M]. New York: John Wiley & Sons Ltd, 2011: 249- 268.
2 赵争菡, 汪友华, 凌跃胜. 电力电子变压器中高频变压器磁芯和绕组特性的研究[D]. 天津: 河北工业大学, 2014.
2 ZHAO Z H, WANG Y H, LING Y S. Research on high-frequency transformer's magnetic core and winding characteristic in power electronic transformer [D]. Tianjin: Hebei University of Technology, 2014.
3 范跃农, 冯则坤, 陈中艳, 等. 电感器用Ni-Cu-Zn铁氧体薄膜的设计与性能研究[J]. 无机材料学报, 2012, 27 (4): 375- 378.
3 FAN Y N , FENG Z K , CHEN Z Y , et al. Design and performannce of Ni-Cu-Zn ferrite film for inductor[J]. Journal of Inorganic Materials, 2012, 27 (4): 375- 378.
4 SHOKROLLAHI H , JANGHORBAN K . Soft magnetic composite materials (SMCs)[J]. Journal of Materials Processing Technology, 2007, 189 (1): 1- 12.
5 ROSHEN W A . A practical, accurate and very general core loss model for nonsinusoidal waveforms[J]. IEEE Transactions on Power Electronics, 2007, 22 (1): 30- 40.
doi: 10.1109/TPEL.2006.886608
6 CHEN T , ROGOWSKI D A , WHITE R M . Microstructure and magnetic properties of electroless Co-P thin films grown on an aluminum base disk substrate[J]. Journal of Applied Physics, 2008, 49 (3): 1816- 1818.
7 ZHANG W L , MU M K , HOU D B , et al. Characterization of low temperature sintered ferrite laminates for high frequency point-of-load (POL) converters[J]. IEEE Transactions on Magnetics, 2013, 49 (11): 5454- 5463.
doi: 10.1109/TMAG.2013.2273755
8 都有为. 磁性材料新近进展[J]. 物理, 2006, 35 (9): 730- 739.
8 DU Y W . Development of magnetic materials in recent years[J]. Physics, 2006, 35 (9): 730- 739.
9 LEARY A M , OHODNICKI P R , MCHENRY M E . Soft magnetic materials in high-frequency, high-power conversion applications[J]. Journal of the Minerals Metals & Materials Society, 2012, 64 (7): 772- 781.
10 HAN Y , CHEUNG G , LI A , et al. Evaluation of magnetic materials for very high frequency power applications[J]. IEEE Transactions on Power Electronics, 2012, 27 (1): 425- 435.
doi: 10.1109/TPEL.2011.2159995
11 BRAUER J R , CENDES Z J , BEIHOFF B C , et al. Laminated steel eddy-current loss versus frequency computed using finite elements[J]. IEEE Transactions on Industry Applications, 2000, 36 (4): 1132- 1137.
doi: 10.1109/28.855970
12 ZHAO Y W , ZHANG X K , XIAO J Q . Submicrometer laminated Fe/SiO2 soft magnetic composites-an effective route to materials for high-frequencyapplications[J]. Advanced Materials, 2005, 17 (7): 915- 918.
doi: 10.1002/(ISSN)1521-4095
13 RODRIGUES L K , JEWELL G W . Model specific characterization of soft magnetic materials for core loss prediction in electrical machines[J]. IEEE Transactions on Magnetics, 2014, 50 (11): 1- 4.
14 LIOU S H , GE S H , TAYLOR J N , et al. Enhanced magnetism in amorphous Fe-based alloys[J]. Journal of Applied Physics, 1987, 61 (8): 3243- 3245.
doi: 10.1063/1.338916
15 YOSHIZAWA Y , OGUMA S , YAMAUCHI K . New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Journal of Applied Physics, 1988, 64 (10): 6044- 6046.
doi: 10.1063/1.342149
16 BARRETT W F , BROWN W , HADFIELD R A . Researches on the electrical conductivity and magnetic properties of upwards of one hundred different alloys of iron[J]. Energy Sources, 1902, 24 (2): 115- 126.
17 周磊, 金自立, 张羊换, 等. 铁钴基软磁材料合金化的研究进展[J]. 金属功能材料, 2006, 13 (6): 37- 41.
17 ZHOU L , JIN Z L , ZHANG Y H , et al. FeCo-based soft magnetic material's addition element and its development[J]. Metallic Functional Materials, 2006, 13 (6): 37- 41.
18 龚坚, 罗海文. 新能源汽车驱动电机用高强度无取向硅钢片的研究与进展[J]. 材料工程, 2015, 43 (6): 102- 112.
doi: 10.11868/j.issn.1001-4381.2015.06.016
18 GONG J , LUO H W . Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles[J]. Journal of Materials Engineering, 2015, 43 (6): 102- 112.
doi: 10.11868/j.issn.1001-4381.2015.06.016
19 新日本制铁株式会社. 无方向性电磁钢板[P]. 中国专利: 102292462A, 2011-12-21.
20 Nippon Steel Corporation. High-strength high-frequency non-oriented electrical steel sheet [P]. Japan Patent: 2011-184787, 2011-09-22.
21 Sumitomo Metal Industries Ltd. Non-oriented electrical steel sheet and production pr℃ess thereof [P]. United States Patent: US 7922834, 2011-04-12.
22 Nippon Steel Corporation. High-tensile-strength non-oriented steel sheet with low iron loss at high frequency [P]. Japan Patent: 2011-184787, 2011-09-22.
23 孙乃坤, 杜胜杰, 郭杰. B掺杂对SmFe10Mo2合金的结构及磁性的影响[J]. 材料研究学报, 2015, 29 (1): 55- 59.
doi: 10.11901/1005.3093.2014.231
23 SUN N K , DU S J , GUO J . Effect of B-doping on microstructure and magnetic properties of SmFe10Mo2 Alloy[J]. Chinese Journal of Materials Research, 2015, 29 (1): 55- 59.
doi: 10.11901/1005.3093.2014.231
24 赵占奎, 邓娜, 昝朝, 等. 高性能软磁材料的研究进展[J]. 长春工业大学学报(自然科学版), 2012, 33 (5): 521- 528.
24 ZHAO Z K , DENG N , ZAN Z , et al. Progress in research of high performance soft magnetic materials[J]. Journal of Changchun University of Technology (Natural Science Editon), 2012, 33 (5): 521- 528.
25 刘渊, 刘祥萱, 王煊军. 铁氧体基核壳结构复合吸波材料研究进展[J]. 材料工程, 2014, (7): 98- 106.
doi: 10.11868/j.issn.1001-4381.2014.07.018
25 LIU Y , LIU X X , WANG X J . Research progress in ferrite based core-shell structured composite microwave absorb materials[J]. Journal of Materials Engineering, 2014, (7): 98- 106.
doi: 10.11868/j.issn.1001-4381.2014.07.018
26 李东风, 贾振斌, 魏雨. 尖晶石型软磁铁氧体纳米材料的制备研究进展[J]. 电子元件与材料, 2003, 22 (6): 37- 40.
26 LI D F , JIA Z B , WEI Y . Progress in the study on the preparation of the nanometer spinel soft magnetic ferrite material[J]. Electronic Components & Materials, 2003, 22 (6): 37- 40.
27 关小蓉, 张剑光, 朱春城, 等. 锰锌、镍锌铁氧体的研究现状及最新进展[J]. 材料导报, 2006, 20 (12): 109- 112.
doi: 10.3321/j.issn:1005-023X.2006.12.028
27 GUAN X R , ZHANG J G , ZHU C C , et al. Current research situation and development of Mn-Zn and Ni-Zn ferrites[J]. Materials Review, 2006, 20 (12): 109- 112.
doi: 10.3321/j.issn:1005-023X.2006.12.028
28 昝朝, 赵占奎. 微胞Fe基软磁复合材料的制备及其电阻率的研究[D]. 长春: 长春工业大学, 2014.
28 ZAN Z, ZHAO Z K. Preparation and resistivity research of micro-cellular structure Fe-based soft magnetic composites [D]. Changchun: Changchun University of Technology, 2014.
29 TYAGI S , BASKEY H B , AGARWALA R C , et al. Development of hard/soft ferrite nanocomposite for enhanced microwave absorption[J]. Ceramics International, 2011, 37 (7): 2631- 2641.
doi: 10.1016/j.ceramint.2011.04.012
30 张兴凯, 王绳芸, 张健, 等. 溶胶-凝胶自燃烧法合成镧掺杂钡铁氧体纳米粉体及其吸波性能研究[J]. 稀有金属, 2015, 39 (8): 715- 719.
30 ZHANG X K , WANG S Y , ZHANG J , et al. Synthesis and microwave absorbing progress of La-doped barium ferrite nano powders via sol-gel auto-combustion method[J]. Chinese Journal of Rare Metals, 2015, 39 (8): 715- 719.
31 YAN Y , NGO K , HOU D B , et al. Effect of sintering temperature on magnetic core-loss properties of a NiCuZn ferrite for high-frequency power converters[J]. Journal of Electronic Materials, 2015, 44 (10): 3788- 3794.
doi: 10.1007/s11664-015-3836-z
32 马玉启, 刘先松, 冯双久, 等. Sn4+取代对NiZn功率铁氧体磁性能的影响[J]. 材料工程, 2015, 43 (8): 72- 76.
doi: 10.11868/j.issn.1001-4381.2015.08.012
32 MA Y Q , LIU X S , FENG S J , et al. Influence of Sn4+ substitution on magnetic properties on NiZn power ferrites[J]. Journal of Materials Engineering, 2015, 43 (8): 72- 76.
doi: 10.11868/j.issn.1001-4381.2015.08.012
33 DUWEZ P . Metastable phases obtained by rapid quenching from the liquid state[J]. Progress in Solid State Chemistry, 1967, 3, 377- 406.
doi: 10.1016/0079-6786(67)90038-6
34 KOLANO R , KOLANO B A , SZYNOWSKI J , et al. Dependence of magnetic properties of the Fe-Co-Cu-Nb-Si-B nanocrystalline alloys on magnetic field frequency and temperature[J]. Materials Science and Engineering: A, 2004, 375, 1072- 1077.
35 INOUE A , KONG F L , MAN Q K , et al. Development and applications of Fe-and Co-based bulk glassy alloys and their prospects[J]. Journal of Alloys and Compounds, 2014, 615 (Suppl): S2- S8.
36 INOUE A , SHEN B L , CHANG C T . Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4 system[J]. Acta Materialia, 2004, 52 (14): 4093- 4099.
doi: 10.1016/j.actamat.2004.05.022
37 赵玉华, 何开元, 张雅静, 等. 非晶合金CoFeNbSiB的纳米晶化及磁性[J]. 材料研究学报, 2001, 15 (2): 249- 253.
37 ZHAO Y H , HE K Y , ZHANG Y J , et al. Nanocrystallization and magnetic properties of CoFeNbSiB amorphous alloy[J]. Chinese Journal of Materials Research, 2001, 15 (2): 249- 253.
38 LOUZGUINE-LUZGIN D V , BAZLOV A I , KETOV S V , et al. Crystal growth limitation as a critical factor for formation of Fe-based bulk metallic glasses[J]. Acta Materialia, 2015, 82, 396- 402.
doi: 10.1016/j.actamat.2014.09.025
39 HAN Y , CHANG C T , ZHU S L , et al. Fe-based soft magnetic amorphous alloys with high saturation magnetization above 1.5 T and high corrosion resistance[J]. Intermetallics, 2014, 54, 169- 175.
doi: 10.1016/j.intermet.2014.06.006
40 PING D H , WU Y Q , HONO K , et al. Microstructural characterization of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys[J]. Scripta Materialia, 2001, 45 (7): 781- 786.
doi: 10.1016/S1359-6462(01)01096-X
41 熊亚东, 林坤, 严密, 等. FeCuNbSiB纳米晶软磁粉芯的制备和磁性能[J]. 稀有金属材料与工程, 2014, 43 (8): 1951- 1954.
41 XIONG Y D , LIN K , YAN M , et al. Fabrication and magnetic properties of FINEMET alloy powder cores[J]. Rare Metal Materials and Engineering, 2014, 43 (8): 1951- 1954.
42 ZIYADI H , HEYDARI A , REZAYAT S M . Preparation and characterization of magnetic α-Fe2O3 nanofibers coated with uniform layers of silica[J]. Ceramics International, 2014, 40 (4): 5913- 5919.
doi: 10.1016/j.ceramint.2013.11.036
43 钟伟, 汤怒江, 靳长清, 等. 具有核/壳结构的纳米复合高频软磁材料[J]. 微纳电子技术, 2008, 45 (7): 373- 379.
43 ZHONG W , TANG N J , JIN C Q , et al. High frequency soft magnetic nanoparticles with core/shell structures[J]. Micronanoelectronic Technology, 2008, 45 (7): 373- 379.
44 BAI G Y , SHI L J , ZHAO Z , et al. Preparation of a novel Fe3O4@SiO2@Ni-La-B magnetic core-shell nanocomposite for catalytic hydrogenation[J]. Mateials Letters, 2013, 96, 93- 96.
doi: 10.1016/j.matlet.2013.01.018
45 YANG L L , ZOU P , CAO J , et al. Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles[J]. Superlattices and Microstructures, 2014, 76, 205- 212.
doi: 10.1016/j.spmi.2014.10.011
46 LIU W , ZHONG W , JIANG H Y , et al. Synthesis and magnetic properties of FeNi3/Al2O3 core-shell nanocomposites[J]. The European Physical Journal B, 2005, 46 (4): 471- 474.
doi: 10.1140/epjb/e2005-00276-2
47 CHEN C T , CHEN Y C . Functional magnetic nanoparticle-based label free fluorescence detection of phosphorylated species[J]. Chemical Communications, 2010, 46 (31): 5674- 5676.
doi: 10.1039/c0cc00637h
48 TAGHVAEI A H , EBRAHIMI A , GHAFFARI M , et al. Magnetic properties of iron-based soft magnetic composites with MgO coating obtained by sol-gel method[J]. Journal of Magnetism and Magnetic Materials, 2010, 322 (7): 808- 813.
doi: 10.1016/j.jmmm.2009.11.008
49 MARTINEZ-BOUBETA C , SIMEONIDIS K , SERANTES D , et al. Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core-shell nanoparticles by tuning dipole-dipole interactions[J]. Advanced Functional Materials, 2012, 22 (17): 3737- 3744.
doi: 10.1002/adfm.v22.17
50 ABBAS M , ISLAM M N , RAO B P , et al. Facile approach for synthesis of high moment Fe/ferrite and FeCo/ferrite core/shell nanostructures[J]. Materials Letters, 2015, 139, 161- 164.
doi: 10.1016/j.matlet.2014.10.078
51 CATALA J N , LU G Q , NGO K . Soft magnetic alloy-polymer composite for high-frequency power electronics application[J]. Journal of Electronic Materials, 2014, 43 (1): 126- 131.
doi: 10.1007/s11664-013-2866-7
52 都有为. 磁性材料进展概览[J]. 功能材料, 2014, 45 (10): 10001- 10005.
doi: 10.3969/j.issn.1001-9731.2014.10.001
52 DU Y W . Progress of magnetic materials[J]. Journal of Functional Materials, 2014, 45 (10): 10001- 10005.
doi: 10.3969/j.issn.1001-9731.2014.10.001
[1] 林锡刚, 陈叔鑫, 缪竞威, 韦建军. 低温等离子复合技术淀积Al2O3膜的性能及应用[J]. 材料工程, 1999, 0(10): 11-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn