Development of High-frequency Soft Magnetic Materials for Power Electronics
Jun-chang LIU1, Yun-hui MEI1,*(), Guo-quan LU1,2
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China 2 Department of Materials Science and Engineering, Virginia Tech, Blacksburg 24061, Virginia, USA
The new requirements of high-frequency magnetic properties are put forward for electronic components with the rapid development of power electronics industry and the use of new electromagnetic materials. The properties of magnetic core, which is the key unit of electronic components, determine the performance of electronic components directly. Therefore, it's necessary to study the high-frequency soft magnetic materials. In this paper, the development history of four types of soft magnetic materials was reviewed. The advantages and disadvantages of each kind of soft magnetic materials and future development trends were pointed out. The emphases were placed on the popular soft magnetic composite materials in recent years. The tendency is to develop high-frequency soft magnetic composite materials with the particle size controllable, uniform coating layer on the core and a mass production method from laboratory to industrialization.
刘君昌, 梅云辉, 陆国权. 电力电子中高频软磁材料的研究进展[J]. 材料工程, 2017, 45(5): 127-134.
Jun-chang LIU, Yun-hui MEI, Guo-quan LU. Development of High-frequency Soft Magnetic Materials for Power Electronics. Journal of Materials Engineering, 2017, 45(5): 127-134.
ZHAO Z H, WANG Y H, LING Y S. Research on high-frequency transformer's magnetic core and winding characteristic in power electronic transformer [D]. Tianjin: Hebei University of Technology, 2014.
FAN Y N , FENG Z K , CHEN Z Y , et al. Design and performannce of Ni-Cu-Zn ferrite film for inductor[J]. Journal of Inorganic Materials, 2012, 27 (4): 375- 378.
4
SHOKROLLAHI H , JANGHORBAN K . Soft magnetic composite materials (SMCs)[J]. Journal of Materials Processing Technology, 2007, 189 (1): 1- 12.
5
ROSHEN W A . A practical, accurate and very general core loss model for nonsinusoidal waveforms[J]. IEEE Transactions on Power Electronics, 2007, 22 (1): 30- 40.
doi: 10.1109/TPEL.2006.886608
6
CHEN T , ROGOWSKI D A , WHITE R M . Microstructure and magnetic properties of electroless Co-P thin films grown on an aluminum base disk substrate[J]. Journal of Applied Physics, 2008, 49 (3): 1816- 1818.
7
ZHANG W L , MU M K , HOU D B , et al. Characterization of low temperature sintered ferrite laminates for high frequency point-of-load (POL) converters[J]. IEEE Transactions on Magnetics, 2013, 49 (11): 5454- 5463.
doi: 10.1109/TMAG.2013.2273755
8
都有为. 磁性材料新近进展[J]. 物理, 2006, 35 (9): 730- 739.
8
DU Y W . Development of magnetic materials in recent years[J]. Physics, 2006, 35 (9): 730- 739.
9
LEARY A M , OHODNICKI P R , MCHENRY M E . Soft magnetic materials in high-frequency, high-power conversion applications[J]. Journal of the Minerals Metals & Materials Society, 2012, 64 (7): 772- 781.
10
HAN Y , CHEUNG G , LI A , et al. Evaluation of magnetic materials for very high frequency power applications[J]. IEEE Transactions on Power Electronics, 2012, 27 (1): 425- 435.
doi: 10.1109/TPEL.2011.2159995
11
BRAUER J R , CENDES Z J , BEIHOFF B C , et al. Laminated steel eddy-current loss versus frequency computed using finite elements[J]. IEEE Transactions on Industry Applications, 2000, 36 (4): 1132- 1137.
doi: 10.1109/28.855970
12
ZHAO Y W , ZHANG X K , XIAO J Q . Submicrometer laminated Fe/SiO2 soft magnetic composites-an effective route to materials for high-frequencyapplications[J]. Advanced Materials, 2005, 17 (7): 915- 918.
doi: 10.1002/(ISSN)1521-4095
13
RODRIGUES L K , JEWELL G W . Model specific characterization of soft magnetic materials for core loss prediction in electrical machines[J]. IEEE Transactions on Magnetics, 2014, 50 (11): 1- 4.
14
LIOU S H , GE S H , TAYLOR J N , et al. Enhanced magnetism in amorphous Fe-based alloys[J]. Journal of Applied Physics, 1987, 61 (8): 3243- 3245.
doi: 10.1063/1.338916
15
YOSHIZAWA Y , OGUMA S , YAMAUCHI K . New Fe-based soft magnetic alloys composed of ultrafine grain structure[J]. Journal of Applied Physics, 1988, 64 (10): 6044- 6046.
doi: 10.1063/1.342149
16
BARRETT W F , BROWN W , HADFIELD R A . Researches on the electrical conductivity and magnetic properties of upwards of one hundred different alloys of iron[J]. Energy Sources, 1902, 24 (2): 115- 126.
ZHOU L , JIN Z L , ZHANG Y H , et al. FeCo-based soft magnetic material's addition element and its development[J]. Metallic Functional Materials, 2006, 13 (6): 37- 41.
GONG J , LUO H W . Progress on the research of high-strength non-oriented silicon steel sheets in traction motors of hybrid/electrical vehicles[J]. Journal of Materials Engineering, 2015, 43 (6): 102- 112.
doi: 10.11868/j.issn.1001-4381.2015.06.016
Sumitomo Metal Industries Ltd. Non-oriented electrical steel sheet and production pr℃ess thereof [P]. United States Patent: US 7922834, 2011-04-12.
22
Nippon Steel Corporation. High-tensile-strength non-oriented steel sheet with low iron loss at high frequency [P]. Japan Patent: 2011-184787, 2011-09-22.
SUN N K , DU S J , GUO J . Effect of B-doping on microstructure and magnetic properties of SmFe10Mo2 Alloy[J]. Chinese Journal of Materials Research, 2015, 29 (1): 55- 59.
doi: 10.11901/1005.3093.2014.231
ZHAO Z K , DENG N , ZAN Z , et al. Progress in research of high performance soft magnetic materials[J]. Journal of Changchun University of Technology (Natural Science Editon), 2012, 33 (5): 521- 528.
LIU Y , LIU X X , WANG X J . Research progress in ferrite based core-shell structured composite microwave absorb materials[J]. Journal of Materials Engineering, 2014, (7): 98- 106.
doi: 10.11868/j.issn.1001-4381.2014.07.018
LI D F , JIA Z B , WEI Y . Progress in the study on the preparation of the nanometer spinel soft magnetic ferrite material[J]. Electronic Components & Materials, 2003, 22 (6): 37- 40.
GUAN X R , ZHANG J G , ZHU C C , et al. Current research situation and development of Mn-Zn and Ni-Zn ferrites[J]. Materials Review, 2006, 20 (12): 109- 112.
doi: 10.3321/j.issn:1005-023X.2006.12.028
ZAN Z, ZHAO Z K. Preparation and resistivity research of micro-cellular structure Fe-based soft magnetic composites [D]. Changchun: Changchun University of Technology, 2014.
29
TYAGI S , BASKEY H B , AGARWALA R C , et al. Development of hard/soft ferrite nanocomposite for enhanced microwave absorption[J]. Ceramics International, 2011, 37 (7): 2631- 2641.
doi: 10.1016/j.ceramint.2011.04.012
ZHANG X K , WANG S Y , ZHANG J , et al. Synthesis and microwave absorbing progress of La-doped barium ferrite nano powders via sol-gel auto-combustion method[J]. Chinese Journal of Rare Metals, 2015, 39 (8): 715- 719.
31
YAN Y , NGO K , HOU D B , et al. Effect of sintering temperature on magnetic core-loss properties of a NiCuZn ferrite for high-frequency power converters[J]. Journal of Electronic Materials, 2015, 44 (10): 3788- 3794.
doi: 10.1007/s11664-015-3836-z
MA Y Q , LIU X S , FENG S J , et al. Influence of Sn4+ substitution on magnetic properties on NiZn power ferrites[J]. Journal of Materials Engineering, 2015, 43 (8): 72- 76.
doi: 10.11868/j.issn.1001-4381.2015.08.012
33
DUWEZ P . Metastable phases obtained by rapid quenching from the liquid state[J]. Progress in Solid State Chemistry, 1967, 3, 377- 406.
doi: 10.1016/0079-6786(67)90038-6
34
KOLANO R , KOLANO B A , SZYNOWSKI J , et al. Dependence of magnetic properties of the Fe-Co-Cu-Nb-Si-B nanocrystalline alloys on magnetic field frequency and temperature[J]. Materials Science and Engineering: A, 2004, 375, 1072- 1077.
35
INOUE A , KONG F L , MAN Q K , et al. Development and applications of Fe-and Co-based bulk glassy alloys and their prospects[J]. Journal of Alloys and Compounds, 2014, 615 (Suppl): S2- S8.
36
INOUE A , SHEN B L , CHANG C T . Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1-xCox)0.75B0.2Si0.05]96Nb4 system[J]. Acta Materialia, 2004, 52 (14): 4093- 4099.
doi: 10.1016/j.actamat.2004.05.022
ZHAO Y H , HE K Y , ZHANG Y J , et al. Nanocrystallization and magnetic properties of CoFeNbSiB amorphous alloy[J]. Chinese Journal of Materials Research, 2001, 15 (2): 249- 253.
38
LOUZGUINE-LUZGIN D V , BAZLOV A I , KETOV S V , et al. Crystal growth limitation as a critical factor for formation of Fe-based bulk metallic glasses[J]. Acta Materialia, 2015, 82, 396- 402.
doi: 10.1016/j.actamat.2014.09.025
39
HAN Y , CHANG C T , ZHU S L , et al. Fe-based soft magnetic amorphous alloys with high saturation magnetization above 1.5 T and high corrosion resistance[J]. Intermetallics, 2014, 54, 169- 175.
doi: 10.1016/j.intermet.2014.06.006
40
PING D H , WU Y Q , HONO K , et al. Microstructural characterization of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys[J]. Scripta Materialia, 2001, 45 (7): 781- 786.
doi: 10.1016/S1359-6462(01)01096-X
XIONG Y D , LIN K , YAN M , et al. Fabrication and magnetic properties of FINEMET alloy powder cores[J]. Rare Metal Materials and Engineering, 2014, 43 (8): 1951- 1954.
42
ZIYADI H , HEYDARI A , REZAYAT S M . Preparation and characterization of magnetic α-Fe2O3 nanofibers coated with uniform layers of silica[J]. Ceramics International, 2014, 40 (4): 5913- 5919.
doi: 10.1016/j.ceramint.2013.11.036
ZHONG W , TANG N J , JIN C Q , et al. High frequency soft magnetic nanoparticles with core/shell structures[J]. Micronanoelectronic Technology, 2008, 45 (7): 373- 379.
44
BAI G Y , SHI L J , ZHAO Z , et al. Preparation of a novel Fe3O4@SiO2@Ni-La-B magnetic core-shell nanocomposite for catalytic hydrogenation[J]. Mateials Letters, 2013, 96, 93- 96.
doi: 10.1016/j.matlet.2013.01.018
45
YANG L L , ZOU P , CAO J , et al. Facile synthesis and paramagnetic properties of Fe3O4@SiO2 core-shell nanoparticles[J]. Superlattices and Microstructures, 2014, 76, 205- 212.
doi: 10.1016/j.spmi.2014.10.011
46
LIU W , ZHONG W , JIANG H Y , et al. Synthesis and magnetic properties of FeNi3/Al2O3 core-shell nanocomposites[J]. The European Physical Journal B, 2005, 46 (4): 471- 474.
doi: 10.1140/epjb/e2005-00276-2
47
CHEN C T , CHEN Y C . Functional magnetic nanoparticle-based label free fluorescence detection of phosphorylated species[J]. Chemical Communications, 2010, 46 (31): 5674- 5676.
doi: 10.1039/c0cc00637h
48
TAGHVAEI A H , EBRAHIMI A , GHAFFARI M , et al. Magnetic properties of iron-based soft magnetic composites with MgO coating obtained by sol-gel method[J]. Journal of Magnetism and Magnetic Materials, 2010, 322 (7): 808- 813.
doi: 10.1016/j.jmmm.2009.11.008
49
MARTINEZ-BOUBETA C , SIMEONIDIS K , SERANTES D , et al. Adjustable hyperthermia response of self-assembled ferromagnetic Fe-MgO core-shell nanoparticles by tuning dipole-dipole interactions[J]. Advanced Functional Materials, 2012, 22 (17): 3737- 3744.
doi: 10.1002/adfm.v22.17
50
ABBAS M , ISLAM M N , RAO B P , et al. Facile approach for synthesis of high moment Fe/ferrite and FeCo/ferrite core/shell nanostructures[J]. Materials Letters, 2015, 139, 161- 164.
doi: 10.1016/j.matlet.2014.10.078
51
CATALA J N , LU G Q , NGO K . Soft magnetic alloy-polymer composite for high-frequency power electronics application[J]. Journal of Electronic Materials, 2014, 43 (1): 126- 131.
doi: 10.1007/s11664-013-2866-7