Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (8): 68-75    DOI: 10.11868/j.issn.1001-4381.2015.001451
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
2A12铝合金的多轴加载疲劳行为
陈亚军, 王先超, 王付胜, 刘波
中国民航大学 中欧航空工程师学院, 天津 300300
Fatigue Behavior of 2A12 Aluminum Alloy Under Multiaxial Loading
CHEN Ya-jun, WANG Xian-chao, WANG Fu-sheng, LIU Bo
Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
全文: PDF(9530 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用SDN100/1000电液伺服拉扭复合疲劳试验机对2A12铝合金进行多关键参数的多轴疲劳性能研究,通过对断口的微观分析探究疲劳失效机理。结果表明:等效应力加载条件下,随拉扭相位差的增加疲劳寿命降低,0°相位差下断面裂纹源区能观察到轮胎状、鱼骨状以及钟乳石状的特殊形貌,裂纹扩展区存在二次裂纹和模糊的疲劳条带;分别改变拉、扭平均应力,多轴疲劳寿命均降低,裂纹源区能看到白色絮状的氧化物,瞬断区存在二次裂纹和剪切型韧窝;不同加载波形条件下,正弦波对应最长的多轴疲劳寿命,三角波次之,方波时最短且体现出最大的结构耗能。低-高两级加载条件下,材料产生"锻炼效应"。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈亚军
王先超
王付胜
刘波
关键词 2A12铝合金多轴疲劳失效机理两级加载锻炼效应    
Abstract:The multiaxial fatigue behavior of 2A12 aluminum alloy was studied with SDN100/1000 electro-hydraulic servo tension-torsion fatigue tester under multiple variables, and the failure mechanism was investigated by scanning electron microscopy (SEM). The results show that under the loading condition of equivalent stress, the fatigue life decreases with the increase of phase angle. For the phase angle 0°, some special features can be observed in the crack initial zone, such as the tire pattern,fishbone pattern and stalactite pattern. There are secondary cracks and vague fatigue striations in the crack propagation zone; the multiaxial fatigue life decreases with the change of mean stress for tension or torsion. Some white flocculent oxides can be found in the crack initiation zone, and secondary crack as well as shear-type elongated dimples in the instantaneous fracture zone; facing different loading waveforms, the multiaxial life of sine wave is the longest, triangle wave in the second place, and the square wave is the shortest, under the loading condition of equivalent stress, square wave leads to the maximum structural energy dissipation. Under the low and high two step loading, 2A12 shows training effect.
Key words2A12 aluminum alloy    multiaxial fatigue    failure mechanism    two-step loading    training effect
收稿日期: 2015-11-26      出版日期: 2017-08-10
中图分类号:  O346.2  
通讯作者: 陈亚军(1976-),男,副教授,博士,研究方向为飞机结构材料失效分析,联系地址:天津市中国民航大学(北院)中欧航空工程师学院(300300),E-mail:2292598008@qq.com     E-mail: 2292598008@qq.com
引用本文:   
陈亚军, 王先超, 王付胜, 刘波. 2A12铝合金的多轴加载疲劳行为[J]. 材料工程, 2017, 45(8): 68-75.
CHEN Ya-jun, WANG Xian-chao, WANG Fu-sheng, LIU Bo. Fatigue Behavior of 2A12 Aluminum Alloy Under Multiaxial Loading. Journal of Materials Engineering, 2017, 45(8): 68-75.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2015.001451      或      http://jme.biam.ac.cn/CN/Y2017/V45/I8/68
[1] 中国航空材料手册编委会.中国航空材料手册:第3卷铝合金镁合金钛合金[M].北京:中国标准出版社,1989.
[2] STALEY J T, LIU J, HUNT W H Jr. Aluminum alloys for aerostructures[J]. Adv Mater Proc,1997,152(4):17-20.
[3] 尚德广,王德俊.多轴疲劳强度[M].北京:科学出版社,2007. SHANG D G, WANG D J. Multiaxial Fatigue Strength[M]. Beijing:Science Press, 2007.
[4] 张成成.复杂应力场下结构高周疲劳寿命分析[D].南京:南京航空航天大学,2010. ZHANG C C. Analysis of high cycle fatigue life of structures under complex stress field[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010.
[5] XU X L, YU Z W. An investigation on the failed blades in a locomotive turbine[J]. Engineering Failure Analysis, 2007,14(7):1322-1328.
[6] 王明春,宋恩鹏,赵清华.基于应力场强方法的多轴疲劳寿命分析及应用[J].飞机设计,2015,35(4):10-13. WANG M C, SONG E P, ZHAO Q H. The prediction of multiaxial high cycle fatigue based on stress field intensity[J]. Aircraft Design, 2015,35(4):10-13.
[7] 童第华,吴学仁,刘建中,等.基于小裂纹理论的铸造钛合金ZTC4疲劳寿命预测[J].材料工程,2015,43(6):60-65. TONG D H, WU X R, LIU J Z, et al. Fatigue life prediction of cast titanium alloy ZTC4 based on the small crack theory[J]. Journal of Materials Engineering, 2015,43(6):60-65.
[8] SUSMEL L,LAZZARIN P. A bi-parametric Wöhler curve for high cycle multiaxial fatigue assessment[J]. Fatigue Fract Eng Mater Struct, 2002,25(1):63-78.
[9] HAN C, CHEN X, KIM K S. Evaluation of multiaxial fatigue criteria under irregular loading[J]. International Journal of Fatigue,2002,24(9):913-922.
[10] AHMADI A, ZENNER H. Lifetime calculation under multiaxial random loading with regard to the microcrack growth[C]//7th International Conference on Biaxial/Multiaxial Fatigue and Fracture.Berlin:European Structural Integrity Society,2004:415-420.
[11] 尚德广,王德俊,姚卫星.多轴非线性连续疲劳损伤累积模型的研究[J].固体力学学报,1999,20(4):325-330. SHANG D G, WANG D J, YAO W X. Study on nonlinear continuum multiaxial fatigue cumulative damage model[J]. Acta Mechanica Solida Sinica,1999,20(4):325-330.
[12] 何国求,丁向群,朱正宇,等.新的多轴非比例加载低周疲劳寿命估算公式[J].机械强度,2004,26(增刊1):258-262. HE G Q, DING X Q, ZHU Z Y, et al. New low cycle fatigue life criterion under nonproportional loading[J].Journal of Mechanical Strength,2004,26(Suppl 1):258-262.
[13] McDIAMID D L. A general criterion for high cycle multiaxial fatigue failure[J]. Fatigue Fract Eng Mater Struct,1991,14(4):429-453.
[14] WANG C H, BROWN M W. A path-independent parameter for fatigue under proportional and non-proportional loading[J]. Fatigue Fract Eng Mater Struc,1993,16(12):1285-1297.
[15] KIM K S,PARK J C. Shear strain based multiaxial fatigue parameters applied to variable amplitude loading[J]. International Journal of Fatigue,1999,21(5):475-483.
[16] 夏天翔,姚卫星,许利蒲. LY12CZ铝合金在多轴两级阶梯谱下疲劳累积损伤理论的对比研究[J]. 航空材料学报,2014,34(3):86-92. XIA T X, YAO W X, XU L P. Comparative research on accumulative damage models under multiaxial 2-stage step loading spectra for LY12CZ aluminium alloy[J]. Journal of Aeronautical Materials,2014,34(3):86-92.
[17] REIS L, LI B, DE F M. Analytical and experimental studies on fatigue crack path under complex multi-axial loading[J]. Fatigue Fract Eng Mater Struct, 2006, 29(4):281-289.
[18] 刘古峰.钻杆用钢复合加载疲劳断裂及规律性研究[D].西安:西安石油大学, 2011. LIU G F. Drill pipe steel under combined loads fatigue fracture and regularity research[D].Xi'an:Xi'an Shiyou University,2011.
[1] 卢轶榕, 郑华勇, 陈秀华, 汪海. 三维机织复合材料/钛合金混杂板缝合连接剪切失效机理[J]. 材料工程, 2020, 48(11): 162-169.
[2] 陈亚军, 刘辰辰, 褚玉龙, 宋肖肖. 7075-T651铝合金薄壁管件多轴低周疲劳行为及寿命预测[J]. 材料工程, 2018, 46(10): 60-69.
[3] 陈亚军, 王先超, 王付胜, 周剑, 吴悦雷. 不同应力幅比加载下2A12铝合金的多轴疲劳性能[J]. 材料工程, 2017, 45(9): 136-142.
[4] 雍薇, 黄兴民, 张雷, 程乾, 戴光泽. 热浸镀铝球墨铸铁失效机理研究[J]. 材料工程, 2016, 44(8): 77-84.
[5] 王亚杰, 王波, 张龙, 马宏毅. 玻璃纤维-铝合金正交层板的拉伸性能研究[J]. 材料工程, 2015, 43(9): 60-65.
[6] 赵凯, 何玉怀, 刘新灵, 陶春虎. 拉弯扭比例加载下50CrVA弹簧钢的多轴疲劳寿命及损伤特征[J]. 材料工程, 2014, 0(12): 99-103.
[7] 杨金丽, 雷永平, 林健, 肖慧. 银含量对跌落条件下无铅焊点疲劳寿命和失效模式的影响[J]. 材料工程, 2013, 0(12): 74-79.
[8] 黄亮亮, 孟惠民, 陈龙. 磁铅石结构六铝酸盐热障涂层的研究现状[J]. 材料工程, 2013, 0(12): 92-99.
[9] 朴钟宇, 徐滨士, 王海斗, 濮春欢. 等离子喷涂铁基涂层的接触疲劳失效机理研究[J]. 材料工程, 2009, 0(11): 69-73.
[10] 李美姮, 张重远, 孙晓峰, 宫声凯, 胡望宇, 管恒荣, 胡壮麒. EB-PVD热障涂层的热循环失效机理[J]. 材料工程, 2002, 0(8): 20-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn