Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (4): 120-126    DOI: 10.11868/j.issn.1001-4381.2016.000411
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
自动铺放成型热塑性复合材料的非等温结晶动力学研究
宋清华, 肖军, 文立伟, 王显峰, 赵聪, 褚奇奕
南京航空航天大学 材料科学与技术学院, 南京 210016
Non-isothermal Crystallization Kinetics of Thermoplastic Composite for Automated Fiber Placement
SONG Qing-hua, XIAO Jun, WEN Li-wei, WANG Xian-feng, ZHAO Cong, CHU Qi-yi
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
全文: PDF(2603 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 利用差示扫描量热仪结合Avrami方程研究玻璃纤维增强聚丙烯复合材料自动铺放成型过程非等温结晶动力学,推导非等温结晶动力学模型,并通过构建冷压辊下方铺层的冷却模型,将结晶动力学模型和传热模型相结合,设定自动铺放成型过程中的冷却条件,探讨冷却速率及冷却时间对基体材料结晶行为的影响,求解出不同冷却速率下的最大铺放速率。研究结果表明:铺层树脂基体的结晶度随冷却速率的增大而依次减小;随着冷却速率的提高,树脂结晶起始温度和结晶完成温度均向低温方向移动,且树脂相对结晶度随温度变化规律接近反S形曲线;自动铺放成型实验件的压缩强度及层间剪切强度随着铺层结晶度的增大基本呈增大趋势,而冲击强度与铺层结晶度的变化趋势完全相反,随着结晶度的增大,材料韧性越差。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋清华
肖军
文立伟
王显峰
赵聪
褚奇奕
关键词 热塑性复合材料自动铺放非等温结晶动力学冷却速率结晶度    
Abstract:The non-isothermal crystallization kinetics of glass fiber reinforced polypropylene for automated fiber placement was studied by differential scanning calorimetry (DSC) and Avrami equation. To investigate the influence of cooling rate and cooling time on non-isothermal crystallization behavior of matrix material and solve the maximum processing speed at different cooling speed, the non-isothermal crystallization kinetics model and the heat transfer model were derived and the cooling conditions in the process of automated fiber placement were set up. The result shows that the crystallinity of the polypropylene decreases along with the increase of cooling speed. The initial and final crystallization temperature are both moving in the direction of low temperature with the increase of cooling speed. The relative crystallinity is closed to the S type curve along with the change of temperature. The compress strength and the interlaminar shear strength are all increasing with the increase of the crystallinity, however, the impact strength is decreasing along with the increase of the crystallinity which is opposite to the compress strength and the interlaminar shear strength.
Key wordsthermoplastic composites    automated fiber placement    non-isothermal crystallization kinetics    cooling speed    crystallinity
收稿日期: 2016-04-06      出版日期: 2018-04-14
中图分类号:  TB332  
  V261  
通讯作者: 肖军(1959-),男,教授,硕士,研究方向:先进复合材料制造技术,联系地址:江苏省南京市白下区御道街29号316信箱(210016),E-mail:j.xiao@nuaa.edu.cn     E-mail: j.xiao@nuaa.edu.cn
引用本文:   
宋清华, 肖军, 文立伟, 王显峰, 赵聪, 褚奇奕. 自动铺放成型热塑性复合材料的非等温结晶动力学研究[J]. 材料工程, 2018, 46(4): 120-126.
SONG Qing-hua, XIAO Jun, WEN Li-wei, WANG Xian-feng, ZHAO Cong, CHU Qi-yi. Non-isothermal Crystallization Kinetics of Thermoplastic Composite for Automated Fiber Placement. Journal of Materials Engineering, 2018, 46(4): 120-126.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000411      或      http://jme.biam.ac.cn/CN/Y2018/V46/I4/120
[1] 迪力穆拉提·阿卜力孜,段玉岗,李涤尘,等. 树脂基复合材料原位固化制造技术概述[J].材料工程,2011(10):84-90. ABULIZI D, DUAN Y G, LI D C, et al. Overview of in-situ curing manufacturing technology for resin matrix composites[J]. Journal of Materials Engineering, 2011(10):84-90.
[2] 韩振宇,李玥华,富宏亚,等. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012(2):91-96. HAN Z Y, LI Y H, FU H Y, et al. Thermoplastic composites fiber placement process research[J]. Journal of Materials Engineering, 2012(2):91-96.
[3] 宋清华, 文立伟, 严飙, 等. 热塑性树脂基复合材料自动铺带技术[J]. 航空制造技术, 2011(15):42-44. SONG Q H, WEN L W, YAN B, et al. Automated tape laying technology of thermoplastic and resin-based composites[J]. Aeronautical Manufacturing Technology, 2011(15):42-44.
[4] 樊在霞, 张瑜, 陈彦模. 冷却方式对GF/PP复合纱针织物复合材料基体结晶结构的影响[J]. 复合材料学报, 2007, 24(3):52-58. FAN Z X, ZHANG Y, CHEN Y M. Effects of cooling condition of GF/PP composites made from commingled yarn on the crystal structure of the matrix[J]. Acta Materiae Compositae Sinica, 2007, 24(3):52-58.
[5] LONG A C, WILKS C E, RUDD C D. Experimental characterization of the consolidation of a commingled glass/polypropylene composite[J]. Composite Science and Technology, 2001, 61(11):1591-1603.
[6] GUAN X, PITCHUMANI R. Modeling of spherulitic crystallization in thermoplastic tow-placement process:heat transfer analysis[J]. Composites Science and Technology, 2004, 64:1123-1134.
[7] 蔡宏强, 陈晓婷, 刘海军, 等. PA6/HBPA共混物的非等温结晶动力学研究[J]. 塑料科技, 2014, 42(10):46-50. CAI H Q, CHEN X T, LIU H J, et al. Study on non-isothermal crystallization kinetics of PA6/HBPA blends[J]. Plastics Science and Technology, 2014, 42(10):46-50.
[8] CHRISTINE A B, ROY L M, RANGA P, et al. An analysis of mechanisms governing fusion bonding of thermoplastic composites[J]. Journal of Thermoplastic Composite Materials, 1998, 11:338-363.
[9] 马立群, 董少波, 王雅珍. 共混改性聚丙烯的结晶动力学研究现状[J]. 广州化工, 2015, 43(24):3-4, 15. MA L Q, DONG S B, WANG Y Z. Advances in crystallization kinetics of blended and modified polypropylene composite materials[J]. Guangzhou Chemical Industry, 2015, 43(24):3-4, 15.
[10] 姜涛, 王菲, 吴全才. 改性PET共聚酯的非等温结晶行为[J]. 塑料, 2015, 44(5):101-104. JIANG T, WANG F, WU Q C. Non-isothermal crystallization behavior of modified PET copolyester[J]. Plastics, 2015, 44(5):101-104.
[11] JIANG Z H, JIN J, XIAO C F, et al. Non-isothermal crystallization behavior of poly(ethylene terephthalate)/carbon black composite[J]. Advanced Materials Research, 2011, 1268(239):3198-3206.
[12] 崔新宇, 周晓东, 戴干策. 玻璃纤维增强聚丙烯结晶动力学研究[J]. 华东理工大学学报, 2001, 27(6):639-642. CUI X Y, ZHOU X D, DAI G C. Crystallization kinetics of glass fiber reinforced polypropylene[J]. Journal of East China University of Science and Technology, 2001, 27(6):639-642.
[13] 杨坡, 胡国胜, 王标兵. 尼龙6/11共聚物的非等温结晶动力学研究[J]. 中北大学学报(自然科学版), 2008, 29(2):156-159. YANG P, HU G S, WANG B B. Investigation on nonisothermal crystallization kinetics of nylon 6/11 copolymer[J]. Journal of North University of China(Natural Science Edition), 2008, 29(2):156-159.
[14] MAFFEZZOLI A, KENNY J M, NICOLAIS L. A macrokinetic approach to crystallization modelling of semicrystalline thermoplastic matrices for advanced composites[J]. Journal of Materials Science, 1993, 28(18):4994-5001.
[15] 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动纤维铺放装备技术[J]. 复合材料学报, 2016, 33(6):1214-1222. SONG Q H, XIAO J, WEN L W, et al. Study on automated fiber placement system for thermoplastic composites[J]. Acta Materiae Compositae Sinica, 2016, 33(6):1214-1222.
[16] 文立伟, 宋清华, 秦丽华, 等. 基于机器视觉与UMAC的自动铺丝成型构件缺陷检测闭环控制系统[J]. 航空学报, 2015, 36(12):3991-4000. WEN L W, SONG Q H, QIN L H, et al. Defect detection and closed-loop control system for automated fiber placement forming components based on machine vision and UMAC[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(12):3991-4000.
[17] JIAO C M, WANG Z Z, LIANG H J, et al. Non-isothermal crystallization kinetics of silane crosslinked polyethylene[J]. Polm Test, 2005, 24(3):71-80.
[18] 杨海, 刘西天. 聚合物结晶动力学[J]. 南阳师范学院学报, 2007, 6(12):37-40, 51. YANG H, LIU X T. Crystallization kinetics of polymers[J]. Journal of Nanyang Normal University, 2007, 6(12):37-40, 51.
[19] 李玥华. 热塑性预浸丝变角度铺放及其轨迹规划的研究[D]. 哈尔滨:哈尔滨工业大学, 2013. LI Y H. Research on thermoplastic towpreg variable angle placement and trajectory planning[D]. Harbin:Harbin Institute of Technology, 2013.
[20] 邹晓轩, 戴文利, 田际波. 非等温条件下聚合物结晶动力学模型研究进展[J]. 高分子通报, 2004(6):15-20. ZOU X X, DAI W L, TIAN J B. Nonisothermal crystallization kinetics of polymers[J]. Polymer Bulletin, 2004(6):15-20.
[21] 陈艳, 王军佐, 曹俊奎, 等. 聚醚醚酮等温结晶动力学的研究[J]. 高等学校化学学报, 1995, 16(2):322-324. CHEN Y, WANG J Z, CAO J K, et al. Studies on isothermal crystallization kinetics of poly(ether ether ketone)[J]. Chemical Research in Chinese University, 1995, 16(2):322-324.
[22] 宋清华, 肖军, 文立伟, 等. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程,2018, 46(1):83-91. SONG Q H, XIAO J, WEN L W, et al. Study on automated fiber placement system for thermoplastic composites[J]. Journal of Materials Engineering, 2018, 46(1):83-91.
[23] 张玉军, 王仕峰, 张勇, 等. PA6/POE中PA6非等温结晶行为[J]. 现代塑料加工应用, 2006, 18(2):26-31. ZHANG Y J, WANG S F, ZHANG Y, et al. Non isothermal crystallization behavior of PA6 in PA6/POE[J]. Modern Plastics Processing and Applications, 2006, 18(2):26-31.
[24] 单桂芳, 杨伟, 唐雪刚, 等. PA6非等温结晶动力学研究[J]. 合成树脂及塑料, 2010, 27(6):53-57. SHAN G F, YANG W, TANG X G, et al. Study on non-isothermal crystallization kinetics of polyamide 6[J]. China Synthetic Resin and Plastics, 2010, 27(6):53-57.
[1] 宋清华, 刘卫平, 肖军, 陈萍, 杨洋, 陈吉平. 热塑性复合材料自动铺放过程中红外加热技术研究[J]. 材料工程, 2019, 47(1): 77-83.
[2] 卢汉桥, 李玉龙, 余啸, 龙维峰, 江建锋. 回流冷却与等温时效过程中Sn-35Bi-1Ag/Ni-P/Cu焊点组织演变[J]. 材料工程, 2018, 46(6): 95-100.
[3] 鲍颖, 骆琳, 俞泽民, 杨冬野, 刘娜, 张国庆, 孙剑飞. 氩气雾化Ti-48Al合金液滴的快速冷却和凝固组织[J]. 材料工程, 2018, 46(12): 117-123.
[4] 董伟, 李文畅, 许富民, 韩阳, 张伟. 单分散铁基Fe60Ni7.5Mo7.5P10C10B5金属玻璃球形粒子的制备及评价[J]. 材料工程, 2018, 46(10): 30-36.
[5] 宋清华, 肖军, 文立伟, 王显峰, 范珏雯, 石甲琪. 热塑性复合材料自动铺放过程中温度场研究[J]. 材料工程, 2018, 46(1): 83-91.
[6] 韩振宇, 孙守政, 付云忠, 富宏亚. 热塑性FRP自动铺放成型缺陷的多尺度研究进展[J]. 材料工程, 2017, 45(7): 118-127.
[7] 钟云娇, 边文凤. PAN基碳纤维微晶结构对拉伸强度的影响[J]. 材料工程, 2017, 45(12): 37-42.
[8] 吕滨江, 彭建, 梁鹏, 王进. 冷却速率对Mg-4.4Zn-0.3Zr-0.4Y变形镁合金组织和性能的影响[J]. 材料工程, 2016, 44(9): 82-88.
[9] 林婷惠, 曹长林, 陈庆华, 钱庆荣, 黄宝铨, 夏新曙, 林新土, 肖荔人. r-PTFE对PBT非等温结晶动力学的影响[J]. 材料工程, 2016, 44(3): 92-96.
[10] 彭宁琦, 唐广波, 刘正东. 奥氏体高温转变区二段冷却速率对铁素体相变的影响[J]. 材料工程, 2013, 0(9): 11-15.
[11] 彭建, 佘欢, 陶健全, 王小红, 潘复生. 冷却过程对AZ61镁合金凝固组织的影响[J]. 材料工程, 2012, 0(2): 58-61.
[12] 韩振宇,李玥华, 富宏亚, 邵忠喜. 热塑性复合材料纤维铺放工艺的研究进展[J]. 材料工程, 2012, 0(2): 91-96.
[13] 冯中学, 潘复生, 张喜燕, 汤爱涛, 付启涛. Mg17Al12相在AZ61镁合金半连续铸锭中的分布特性[J]. 材料工程, 2012, 0(1): 13-17.
[14] 曹杰, 阎军, 刘雅政, 章静, 孙维, 于同仁, 柳美玲. 高强度非调质冷镦钢热机轧制实验研究[J]. 材料工程, 2011, 0(11): 35-38.
[15] 杨璧玲, 张慧萍, 张同华, 庄兴民, 晏雄. 含材料非线性的热塑性聚乙烯自增强复合材料逐渐损伤分析[J]. 材料工程, 2009, 0(11): 65-68,98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn