Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (4): 27-33    DOI: 10.11868/j.issn.1001-4381.2016.000686
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
7B04铝合金超塑性变形行为
张宁1,2,3, 王耀奇1,2,3, 侯红亮1,2,3, 张艳苓1,2,3, 董晓萌4, 李志强1
1. 北京航空制造工程研究所, 北京 100024;
2. 塑性成形技术航空科技重点实验室, 北京 100024;
3. 数字化塑性成形技术及装备北京市重点实验室, 北京 100024;
4. 北京科技大学, 北京 100083
Superplastic Deformation Behavior of 7B04 Al Alloy
ZHANG Ning1,2,3, WANG Yao-qi1,2,3, HOU Hong-liang1,2,3, ZHANG Yan-ling1,2,3, DONG Xiao-meng4, LI Zhi-qiang1
1. Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024, China;
2. Aeronautical Key Laboratory for Plastic Forming Technology, Beijing 100024, China;
3. Beijing Key Laboratory of Digital Plasticity Forming Technology and Equipment, Beijing 100024, China;
4. University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(4830 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 针对7B04铝合金开展了变形温度为470~530℃,应变速率为0.0003~0.01s-1的高温超塑性拉伸实验,研究了材料的超塑性变形行为和变形机制。结果表明,7B04铝合金的流动应力随着变形温度的升高和应变速率的降低而逐渐减小,伸长率随之增加;在变形温度为530℃,应变速率为0.0003s-1时,7B04铝合金的伸长率达到最大1105%,超塑性能最佳;应变速率敏感性指数m值均大于0.3,且随变形温度的升高而增加;在500~530℃的变形温度范围内, m值大于0.5,表明7B04铝合金超塑性变形以晶界滑动为主要变形机制;变形激活能Q为190kJ/mol,表明7B04铝合金的超塑性变形主要受晶内扩散控制;7B04铝合金超塑性变形中在晶界附近有液相产生,且适量的液相有利于提高材料的超塑性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张宁
王耀奇
侯红亮
张艳苓
董晓萌
李志强
关键词 7B04铝合金超塑性变形行为变形机制    
Abstract:The superplastic tensile tests were carried out for 7B04 Al alloy under a temperature range of 470-530℃ at a strain rate range of 0.0003-0.01s-1. Then,the superplastic deformation behavior and deformation mechanism of the material were investigated. The results show that with the increase of temperature and decrease of strain rate, the flow stress of 7B04 Al alloy is decreased and the elongation is increased.When the deformation temperature is at 530℃ and the strain rate is 0.0003s-1, the elongation reaches the maximum value of 1105%, which indicates that at this process parameter the optimal superplasticity is obtained; the strain rate sensitivity index m value is above 0.3 and increases as the temperature going up; when the deformation temperature is at the range of 500-530℃, the m value is above 0.5,the superplastic deformation mechanism of 7B04 Al alloy predominated by grain boundary sliding; the superplastic deformation activation energy Q value is 190kJ/mol which indicates that the superplastic deformation is significantly controlled by the intercrystalline diffusion; the liquid phase will be produced along the grain boundaries of 7B04 Al alloy during superplastic deformation,which can enhance the superplasticity with a moderate amount.
Key words7B04 Al alloy    superplasticity    deformation behavior    deformation mechanism
收稿日期: 2016-06-05      出版日期: 2017-04-17
中图分类号:  TG135.3  
  TG146.2  
通讯作者: 侯红亮(1963-),男,研究员,主要从事钛合金、铝合金等先进航空材料钣金成形技术研究工作,联系地址:北京市340信箱106分箱(100024),E-mail:hou_ll@163.com     E-mail: hou_ll@163.com
引用本文:   
张宁, 王耀奇, 侯红亮, 张艳苓, 董晓萌, 李志强. 7B04铝合金超塑性变形行为[J]. 材料工程, 2017, 45(4): 27-33.
ZHANG Ning, WANG Yao-qi, HOU Hong-liang, ZHANG Yan-ling, DONG Xiao-meng, LI Zhi-qiang. Superplastic Deformation Behavior of 7B04 Al Alloy. Journal of Materials Engineering, 2017, 45(4): 27-33.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000686      或      http://jme.biam.ac.cn/CN/Y2017/V45/I4/27
[1] 黄敏,陈轶,李超,等. 7A12-T7352铝合金高温力学性能及断裂行为研究[J]. 航空材料学报,2014,34(1):82-85. HUANG M,CHEN Y,LI C,et al. High temperature mechanical properties and fracture characteristics of 7A12-T7352[J]. Journal of Aeronautical Materials,2014,34(1):82-85.
[2] 佘欢,疏达,储威,等. Fe和Si杂质元素对7XXX系高强航空铝合金组织及性能的影响[J]. 材料工程,2013,(6):92-98. SHE H,SHU D,CHU W,et al. Effects of Fe and Si impurities on the microstructure and properties of 7XXX high strength aircraft aluminum alloys[J]. Journal of Materials Engineering,2013,(6):92-98.
[3] 姬浩. 7000系高强铝合金的发展及其在飞机上的应用[J]. 航空科学技术,2015,26(6):75-78. JI H. Development and application of 7000 high strength aluminum alloys on airplane [J]. Aeronautical Science & Technology,2015,26(6):75-78.
[4] 刘昌斌,夏长清,戴晓元. 高强高韧铝合金的研究现状及发展趋势[J]. 矿冶工程,2003,23(6):74-82. LIU C B,XIA C Q,DAI X Y. Present states of research and developing trends of high strength and high toughness aluminum alloy[J]. Mining and Metallurgical Engineering,2003,23(6):74-82.
[5] 谢优华,陆 政,戴圣龙. Al-6Mg-0.2Sc铝合金高温力学行为研究[J]. 材料工程,2007,(3):49-52. XIE Y H,LU Z,DAI S L. Mechanical behavior of Al-6Mg-0.2Sc aluminum alloys at elevated temperature[J]. Journal of Materials Engineering,2007,(3):49-52.
[6] 宁爱林,曾苏民. 时效制度对7B04铝合金组织和性能的影响[J]. 中国有色金属学报,2004,14(6):922-927. NING A L,ZENG S M. Effects of ageing system on microstructure and mechanical properties of 7B04 aluminium alloy[J]. The Chinese Journal of Nonferrous Metals,2004,14(6):922-927.
[7] 张智慧,左玉婷,刘淑凤. 7B04铝合金板沿厚度方向显微组织、织构及力学性能的研究[J]. 电子显微学报,2011,30(4-5):322-327. ZHANG Z H,ZUO Y T,LIU S F. Study on microstructure, mixture and tensile property of 7B04 aluminium alloy plate along thickness direction [J].Journal of Chinese Electron Microscopy Society,2011,30(4-5):322-327.
[8] 乔志伟. 变形条件对7475铝合金组织和超塑性性能的影响[D]. 湖南:湖南大学,2007. QIAO Z W. The effect of deformation processing on the microstructure and superplastic properties of 7475 Al alloy[D]. Hunan: Hunan university,2007.
[9] TAKAYAMA Y, TOZAMA T, KATO H. Superplasticity and thickness of liquid phase in the vicinity of solidus temperature in a 7475 aluminum alloy[J]. Acta Materialia, 1999, 47(4): 1263-1270.
[10] SMOLEJ A, GNAMUS M, SLACK E. The influence of the thermomechanical processing and forming parameters on superplastic behavior of the 7475 aluminium alloy[J]. Journal of Materials Processing Technology, 2001, 118(1-3): 397-402.
[11] CHEN C L, TAN M J. Effect of grain boundary character distribution (GBCD) on the cavitation behavior during superplastic deformation of Al 7475 [J]. Materials Science & Engineering: A, 2002, 338(1-2): 243-252.
[12] IWASAKI H, MABUCHI M, HIGASHI K. Plastic cavity growth during superplastic flow in AA 7475Al alloy containing a small amount of liquid[J]. Acta Materialia, 2001, 49(12): 2269-2275.
[13] 张林. 喷射成形7475铝合金热处理及超塑性研究[D]. 上海:上海交通大学,2010. ZHANG L. Study on heat treatment process and superplasticity of 7475 alloy by spray forming[D]. Shanghai: Shanghai Jiao Tong University,2010.
[14] WANG T, YIN Z M, SUN Q. Effect of homogenization treatment on microstructure and hot workability of high strength 7B04 aluminium alloy[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(2): 335-339.
[15] LI Z H, XIONG B Q, ZHANG Y A, et al. Effects of the two-step ageing treatment on the microstructure and properties of 7B04 alloy pre-stretched thick plates[J]. Rare Metals, 2007, 26(3): 193-199.
[16] LI Z H, XIONG B Q, ZHANG Y A, et al. Microstructural evolution of aluminum alloy 7B04 thick plate by various thermal treatments[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(1): 40-45.
[17] GAO F H, LI N K, TIAN N, et al. Overheating temperature of 7B04 highstrength aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(2): 321-326.
[18] 景武,赵怿,许广兴,等. 7B04铝合金薄板成形过程中的退火工艺优化[J]. 沈阳理工大学学报,2012,31(2):91-94. JING W,ZHAO Y,XU G X,et al. Optimum annealing process scheme in aluminum alloy 7B04 sheet formation[J]. Journal of Shenyang Ligong University,2012,31(2):91-94.
[19] 李超,万敏,黄霖. 7B04铝合金蠕变过程中析出相的影响因素[J]. 航空材料学报,2009,29(2):13-17. LI C,WAN M,HUANG L. Effect on precipitation phases of 7B04 aluminum alloy during creep process[J]. Journal of Aeronautical Materials,2009,29(2):13-17.
[20] LIN D, SUN F. Superplasticity in a large-grained TiAl alloy[J]. Intermetallics, 2004, 12(7): 875-883.
[21] 张凯锋,尹德良,王国峰,等. 热轧AZ31镁合金超塑变形中的微观组织演变及断裂行为[J]. 航空材料学报,2005,25(1):5-10. ZHANG K F,YIN D L,WANG G F,et al. Microstructure evolution and fraction behavior in superplastic deformation of hot-rolled AZ31 Mg alloy[J]. Journal of Aeronautical Materials,2005,25(1):5-10.
[22] CHEN K C, TAN M J. Cavity growth and filament formation of superplastically deformed Al 7475 alloy[J]. Materials Science & Engineering: A, 2001, 298(1): 235-244.
[23] 张福全,乔志伟,陈振华,等. 微量液相与7475铝合金的超塑性变形[J].矿冶工程,2007,27(4):71-73. ZHANG F Q,QIAO Z W,CHEN Z H,et al. Effects of small amount of liquid on the superplasicity deformation of 7475 aluminium alloy[J]. Mining and Metallurgical Engineering,2007,27(4):71-73.
[24] 许晓静. 微量液相与铝基复合材料高应变速率超速性[J]. 宇航材料工艺,1999,29(5):41-43. XU X J. Role of liquid in high strain rate superplasticity of aluminum matrix composites[J]. Aerospace Materials and Technology,1999,29(5):41-43.
[1] 杨宝成, 彭艳, 潘复生, 石宝东. 基于分子动力学镁合金塑性变形机制的研究进展[J]. 材料工程, 2019, 47(8): 40-48.
[2] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[3] 万鹏, 王克鲁, 鲁世强, 陈虚怀, 周峰. 基于应变补偿和PSO-BP神经网络的Ti-2.7Cu合金本构关系[J]. 材料工程, 2019, 47(4): 113-119.
[4] 叶凌英, 孙泉, 李红萍, 刘胜胆, 张新明. 预变形对2050铝锂合金晶粒细化及超塑性的影响[J]. 材料工程, 2019, 47(12): 92-97.
[5] 叶凌英, 杨栋, 李红萍, 张新明, 廖荣跃. 5A90铝锂合金超塑性变形机理的定量研究[J]. 材料工程, 2019, 47(11): 163-170.
[6] 闫化锦, 田素贵, 朱新杰, 于慧臣, 舒德龙, 张宝帅. 单晶镍基合金的层错能及其对蠕变机制的影响[J]. 材料工程, 2018, 46(10): 87-95.
[7] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[8] 刁仲驰, 姚泽坤, 申景园, 刘瑞, 郭鸿镇. TC18钛合金的超塑性行为与变形机制[J]. 材料工程, 2017, 45(5): 80-85.
[9] 陈敏, 叶凌英, 孙大翔, 杨涛, 王国玮, 张新明. 升温速率对7B04铝合金板材晶粒组织和超塑性的影响[J]. 材料工程, 2017, 45(3): 112-118.
[10] 舒德龙, 田素贵, 梁爽, 张宝帅. 一种4.5% Re镍基单晶合金在980℃蠕变期间的变形与损伤机制[J]. 材料工程, 2017, 45(1): 93-100.
[11] 谢文才, 苑世剑. 低碳钢薄壁焊管液压胀形行为[J]. 材料工程, 2017, 45(1): 72-77.
[12] 陈斌, 孙威, 赵颉, 胡常青. 亚稳β型钛合金中的{332}<113>变形孪晶[J]. 材料工程, 2017, 45(1): 111-119.
[13] 张施琦, 冯定, 张跃, 洪继要. 新型超高强度热冲压用钢的热变形行为及本构关系[J]. 材料工程, 2016, 44(5): 15-21.
[14] 江海涛, 段晓鸽, 蔡正旭, 王丹. 异步轧制AZ31镁合金板材的超塑性工艺及变形机制[J]. 材料工程, 2015, 43(8): 7-12.
[15] 付明杰, 许慧元, 刘佳佳, 韩秀全. 基于最大m值法和恒应变速率法的Ti3Al基合金超塑变形行为研究[J]. 材料工程, 2015, 43(11): 32-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn