Please wait a minute...
 
2222材料工程  2018, Vol. 46 Issue (5): 120-125    DOI: 10.11868/j.issn.1001-4381.2016.000770
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能
杨伟华, 吴玉萍(), 洪晟, 李佳荟, 李柏涛
河海大学 力学与材料学院, 南京 211100
Microstructure, Friction and Wear Properties of HVOF Sprayed WC-10Co-4Cr Coating
Wei-hua YANG, Yu-ping WU(), Sheng HONG, Jia-hui LI, Bo-tao LI
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
全文: PDF(3822 KB)   HTML ( 15 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用超音速火焰(High Velocity Oxygen Fuel,HVOF)喷涂技术在Q235钢基体上制备WC-10Co-4Cr涂层。利用透射电子显微电镜、扫描电子显微电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机等手段对涂层的微观组织结构和摩擦磨损性能进行研究。结果表明:采用HVOF喷涂技术制备的WC-10Co-4Cr涂层结构致密,与基体结合良好,孔隙率为0.67%。涂层中的物相以WC为主,此外还含有少量W2C相和非晶相。涂层的平均显微硬度为1230HV0.3。WC-10Co-4Cr涂层具有良好的耐摩擦磨损性能,累计磨损量(14.4mg)仅为Cr12MoV冷作模具钢的2/5。磨粒磨损为WC-10Co-4Cr涂层的主要磨损机制。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨伟华
吴玉萍
洪晟
李佳荟
李柏涛
关键词 超音速火焰喷涂WC-10Co-4Cr涂层组织摩擦磨损性能    
Abstract

WC-10Co-4Cr coating was prepared on Q235 steel substrate by high velocity oxygen fuel (HVOF) spray process. The microstructure and wear properties of the WC-10Co-4Cr coating were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), X-ray diffraction(XRD), microhardness tester and friction-abrasion testing machine. The results show that the coating exhibits dense structure with the porosity of 0.67% and compact bonding with the substrate. The coating is mainly composed of WC, and a small amount of W2C and amorphous phases as well, and the average microhardness of the coating is 1230HV0.3. The cumulative mass loss of WC-10Co-4Cr coating is only 2/5 of the cold work die steel Cr12MoV, which indicates the WC-10Co-4Cr coating exhibits better abrasive properties. The abrasive wear is the main wear mechanism for the coating.

Key wordshigh velocity oxygen fuel spray    WC-10Co-4Cr coating    microstructure    friction and wear property
收稿日期: 2016-06-22      出版日期: 2018-05-16
中图分类号:  TG174.44  
基金资助:国家自然科学基金资助项目(51579087);国家自然科学基金资助项目(51609067);江苏省自然科学基金资助项目(BK20150806)
通讯作者: 吴玉萍     E-mail: wuyphhu@163.com
作者简介: 吴玉萍(1964-), 女, 教授, 博士, 研究方向为金属材料及表面工程, 联系地址:江苏省南京市江宁区佛城西路8号河海大学力学与材料学院(211100), E-mail:wuyphhu@163.com
引用本文:   
杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
Wei-hua YANG, Yu-ping WU, Sheng HONG, Jia-hui LI, Bo-tao LI. Microstructure, Friction and Wear Properties of HVOF Sprayed WC-10Co-4Cr Coating. Journal of Materials Engineering, 2018, 46(5): 120-125.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000770      或      http://jme.biam.ac.cn/CN/Y2018/V46/I5/120
Fig.1  WC-10Co-4Cr粉末显微组织形貌
Kerosene flow rate/
(L·min-1)
Oxygen flow rate/
(L·min-1)
Spray distance/
mm
Carrier gas flow rate/
(L·min-1)
Powder feed rate/
(r·min-1)
Spray gun speed/
(mm·s-1)
0.33 944 380 10.8 5 280
Table 1  HVOF喷涂工艺参数
Fig.2  WC-10Co-4Cr粉末和涂层的XRD谱图
Fig.3  WC-10Co-4Cr涂层的截面形貌
Fig.4  WC-10Co-4Cr涂层截面形貌(a)及A点和B点的能谱分析(b)
Fig.5  WC-10Co-4Cr涂层的TEM图像及选区衍射花样
(a)TEM图;(b), (c)A,B区的选区电子衍射花样
Fig.6  WC-10Co-4Cr涂层截面显微硬度
Fig.7  WC-10Co-4Cr涂层和Cr12MoV冷作模具钢摩擦因数
Fig.8  WC-10Co-4Cr涂层和Cr12MoV冷作模具钢累计磨损量
Fig.9  Czichos模型拟合曲线
Fig.10  WC-10Co-4Cr涂层(a)和Cr12MoV冷作模具钢(b)磨损后的表面形貌
1 栗卓新, 祝弘滨, 李辉, 等. 热喷涂金属陶瓷复合涂层研究进展[J]. 材料工程, 2012, (5): 93- 98.
1 LI Z X , ZHU H B , LI H , et al. Progress of thermal spray cermet coatings[J]. Journal of Materials Engineering, 2012, (5): 93- 98.
2 杨胶溪, 张健全, 常万庆, 等. 激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J]. 材料工程, 2016, 44 (6): 110- 116.
doi: 10.11868/j.issn.1001-4381.2016.06.017
2 YANG J X , ZHANG J Q , CHANG W Q , et al. High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating[J]. Journal of Materials Engineering, 2016, 44 (6): 110- 116.
doi: 10.11868/j.issn.1001-4381.2016.06.017
3 MINDIVAN H . Wear behavior of plasma and HVOF sprayed WC-12Co+6% ETFE coatings on AA2024-T6 aluminum alloy[J]. Surface and Coatings Technology, 2010, 204 (12): 1870- 1874.
4 王东生, 田宗军, 王松林, 等. 激光重熔等离子喷涂WC颗粒增强镍基涂层组织及高温磨损性能[J]. 焊接学报, 2012, 33 (11): 13- 16.
4 WANG D S , TIAN Z J , WANG S L , et al. High temperature wear behavior of WC particles reinforced Ni-based plasma-sprayed coating by laser remelting[J]. Transactions of the China Welding Institution, 2012, 33 (11): 13- 16.
5 HULKA I , ŞERBAN V , SECOŞAN I , et al. Wear properties of CrC-37WC-18M coatings deposited by HVOF and HVAF spraying processes[J]. Surface and Coatings Technology, 2012, 210, 15- 20.
doi: 10.1016/j.surfcoat.2012.07.077
6 WANG Q , CHEN Z , DING Z . Performance of abrasive wear of WC-12Co coatings sprayed by HVOF[J]. Tribology International, 2009, 42 (7): 1046- 1051.
doi: 10.1016/j.triboint.2009.02.011
7 HONG S , WU Y , ZHENG Y , et al. Effect of spray parameters on the corrosion behavior of HVOF sprayed WC-Co-Cr coatings[J]. Journal of Materials Engineering and Performance, 2014, 23 (4): 1434- 1439.
doi: 10.1007/s11665-014-0865-3
8 NAHVI S , JAFARI M . Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings[J]. Surface and Coatings Technology, 2016, 286, 95- 102.
doi: 10.1016/j.surfcoat.2015.12.016
9 RODRIGUEZ M , GIL L , CAMERO S , et al. Effects of the dispersion time on the microstructure and wear resistance of WC/Co-CNTs HVOF sprayed coatings[J]. Surface and Coatings Technology, 2014, 258, 38- 48.
doi: 10.1016/j.surfcoat.2014.10.014
10 查柏林, 高双林, 乔素磊, 等. 超音速火焰喷涂参数及粉末粒度对WC-12Co涂层弹性模量的影响[J]. 材料工程, 2015, 43 (4): 92- 97.
doi: 10.11868/j.issn.1001-4381.2015.04.016
10 ZHA B L , GAO S L , QIAO S L , et al. Influence of HVO-AF parameters and particle size on elastic modulus of WC-12Co coatings[J]. Journal of Materials Engineering, 2015, 43 (4): 92- 97.
doi: 10.11868/j.issn.1001-4381.2015.04.016
11 王培铭, 许乾慰. 材料研究方法[M]. 北京: 科学出版社, 2005: 145- 146.
11 WANG P M , XU Q W . Materials research methods[M]. Beijing: Science Press, 2005: 145- 146.
12 HONG S , WU Y P , GAO W W , et al. Microstructural characterisation and microhardness distribution of HVOF sprayed WC-10Co-4Cr coating[J]. Surface Engineering, 2014, 30 (1): 53- 58.
doi: 10.1179/1743294413Y.0000000184
13 INOUE A , ZHANG T , MASUMOTO T . Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Materials Transactions, JIM, 1989, 30 (12): 965- 972.
doi: 10.2320/matertrans1989.30.965
14 ZHENG Z , LU W , HE D Y , et al. Microstructure and frictional behavior of Fe-based amorphous metallic coatings prepared by atmospheric plasma spraying[J]. RARE Metal Materialsand Engineering, 2011, 40, 160- 165.
15 LEE C , HAN J , YOON J , et al. A study on powder mixing for high fracture toughness and wear resistance of WC-Co-Cr coatings sprayed by HVOF[J]. Surface and Coatings Technology, 2010, 204 (14): 2223- 2229.
doi: 10.1016/j.surfcoat.2009.12.014
16 LIMA C , LIBARDI R , CAMARGO F , et al. Assessment of abrasive wear of nanostructured WC-Co and Fe-based coatings applied by HP-HVOF, flame, and wire arc spray[J]. Journal of Thermal Spray Technology, 2014, 23 (7): 1097- 1104.
doi: 10.1007/s11666-014-0101-6
17 WANG H , WANG X , SONG X , et al. Sliding wear behavior of nanostructured WC-Co-Cr coatings[J]. Applied Surface Science, 2015, 355, 453- 460.
doi: 10.1016/j.apsusc.2015.07.144
18 霍斯特·契可斯. 摩擦学对摩擦润滑和磨损科学技术的系统分析[M]. 北京: 机械工业出版社, 1984: 66- 67.
18 HORST C . Tribology:a systems approach to the science and technology of friction, lubrication and wear[M]. Beijing: China Machine Press, 1984: 66- 67.
[1] 许家豪, 汪选国, 姚振华. 粉末冶金制备工艺对TiC增强高铬铸铁基复合材料性能的影响[J]. 材料工程, 2022, 50(9): 105-112.
[2] 赵云松, 杨昭, 陈瑞志, 张剑, 骆宇时, 刘丽荣. Ru对第四代镍基单晶高温合金DD22长期时效组织演化的影响[J]. 材料工程, 2022, 50(9): 127-136.
[3] 刘雄飞, 杜文博, 付军健, 王云峰, 李淑波, 朱训明, 王朝辉. Gd对Mg-xGd-1Er-1Zn-0.6Zr合金显微组织和腐蚀行为的影响[J]. 材料工程, 2022, 50(9): 159-168.
[4] 朱阳阳, 李晓延, 张伟栋, 张虎, 何溪. 全Cu3Sn焊点在高温时效下的组织及力学性能[J]. 材料工程, 2022, 50(9): 169-176.
[5] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[6] 薛燕鹏, 王效光, 赵金乾, 史振学, 刘世忠, 李嘉荣. 两种型壳温度对DD9单晶涡轮叶片凝固组织的影响[J]. 材料工程, 2022, 50(7): 80-87.
[7] 杨新岐, 元惠新, 孙转平, 闫新中, 赵慧慧. 铝合金厚板静止轴肩搅拌摩擦焊接头组织及性能[J]. 材料工程, 2022, 50(7): 128-138.
[8] 李正兵, 李海涛, 郭义乐, 陈益平, 程东海, 胡德安, 高俊豪, 李东阳. Co颗粒含量对SnBi/Cu接头微观组织与性能的影响[J]. 材料工程, 2022, 50(7): 149-155.
[9] 车倩颖, 贺卫卫, 李会霞, 程康康, 王宇. 电子束选区熔化成形Ti2AlNb合金微观组织与性能[J]. 材料工程, 2022, 50(7): 156-164.
[10] 邓操, 李瑞迪, 袁铁锤, 牛朋达. Al含量对选区激光熔化AlxCoCrFeNi (x=0.3, 0.5, 0.7, 1.0)的显微组织及纳米压痕的影响[J]. 材料工程, 2022, 50(6): 27-35.
[11] 张昌青, 王树文, 罗德春, 师文辰, 刘晓, 崔国胜, 陈波阳, 辛舟, 芮执元. 热电耦合对铝/钢连续驱动摩擦焊接头组织的影响机理[J]. 材料工程, 2022, 50(5): 35-42.
[12] 杨跃森, 董红刚, 吴宝生, 李鹏, 杨江, 马月婷. Zr-Cu-Ni非晶钎料真空钎焊TiAl合金/316L不锈钢接头的界面组织与剪切性能[J]. 材料工程, 2022, 50(5): 52-61.
[13] 翟海民, 马旭, 袁花妍, 欧梦静, 李文生. 内生非晶复合材料组织与力学性能调控研究进展[J]. 材料工程, 2022, 50(5): 78-89.
[14] 梁恩泉, 代宇, 白静, 周亚雄, 彭东剑, 王清正, 康楠, 林鑫. 退火态激光选区熔化成形AlSi10Mg合金组织与力学性能[J]. 材料工程, 2022, 50(5): 156-165.
[15] 安强, 祁文军, 左小刚. TA15钛合金表面原位合成TiC增强钛基激光熔覆层的组织与耐磨性[J]. 材料工程, 2022, 50(4): 139-146.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn