Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (5): 120-125    DOI: 10.11868/j.issn.1001-4381.2016.000770
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能
杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛
河海大学 力学与材料学院, 南京 211100
Microstructure, Friction and Wear Properties of HVOF Sprayed WC-10Co-4Cr Coating
YANG Wei-hua, WU Yu-ping, HONG Sheng, LI Jia-hui, LI Bo-tao
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
全文: PDF(3822 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用超音速火焰(High Velocity Oxygen Fuel,HVOF)喷涂技术在Q235钢基体上制备WC-10Co-4Cr涂层。利用透射电子显微电镜、扫描电子显微电镜、X射线衍射仪、显微硬度计、摩擦磨损试验机等手段对涂层的微观组织结构和摩擦磨损性能进行研究。结果表明:采用HVOF喷涂技术制备的WC-10Co-4Cr涂层结构致密,与基体结合良好,孔隙率为0.67%。涂层中的物相以WC为主,此外还含有少量W2C相和非晶相。涂层的平均显微硬度为1230HV0.3。WC-10Co-4Cr涂层具有良好的耐摩擦磨损性能,累计磨损量(14.4mg)仅为Cr12MoV冷作模具钢的2/5。磨粒磨损为WC-10Co-4Cr涂层的主要磨损机制。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨伟华
吴玉萍
洪晟
李佳荟
李柏涛
关键词 超音速火焰喷涂WC-10Co-4Cr涂层组织摩擦磨损性能    
Abstract:WC-10Co-4Cr coating was prepared on Q235 steel substrate by high velocity oxygen fuel (HVOF) spray process. The microstructure and wear properties of the WC-10Co-4Cr coating were investigated by transmission electron microscopy(TEM), scanning electron microscopy(SEM), X-ray diffraction(XRD), microhardness tester and friction-abrasion testing machine. The results show that the coating exhibits dense structure with the porosity of 0.67% and compact bonding with the substrate. The coating is mainly composed of WC, and a small amount of W2C and amorphous phases as well, and the average microhardness of the coating is 1230HV0.3. The cumulative mass loss of WC-10Co-4Cr coating is only 2/5 of the cold work die steel Cr12MoV, which indicates the WC-10Co-4Cr coating exhibits better abrasive properties. The abrasive wear is the main wear mechanism for the coating.
Key wordshigh velocity oxygen fuel spray    WC-10Co-4Cr coating    microstructure    friction and wear property
收稿日期: 2016-06-22      出版日期: 2018-05-16
中图分类号:  TG174.44  
通讯作者: 吴玉萍(1964-),女,教授,博士,研究方向为金属材料及表面工程,联系地址:江苏省南京市江宁区佛城西路8号河海大学力学与材料学院(211100),E-mail:wuyphhu@163.com     E-mail: wuyphhu@163.com
引用本文:   
杨伟华, 吴玉萍, 洪晟, 李佳荟, 李柏涛. 超音速火焰喷涂WC-10Co-4Cr涂层的微观组织与摩擦磨损性能[J]. 材料工程, 2018, 46(5): 120-125.
YANG Wei-hua, WU Yu-ping, HONG Sheng, LI Jia-hui, LI Bo-tao. Microstructure, Friction and Wear Properties of HVOF Sprayed WC-10Co-4Cr Coating. Journal of Materials Engineering, 2018, 46(5): 120-125.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000770      或      http://jme.biam.ac.cn/CN/Y2018/V46/I5/120
[1] 栗卓新,祝弘滨,李辉,等.热喷涂金属陶瓷复合涂层研究进展[J].材料工程,2012(5):93-98.LI Z X,ZHU H B,LI H,et al.Progress of thermal spray cermet coatings[J].Journal of Materials Engineering,2012(5):93-98.
[2] 杨胶溪,张健全,常万庆,等.激光熔覆WC/Ni基复合涂层高温滑动干摩擦磨损性能[J].材料工程,2016,44(6):110-116.YANG J X,ZHANG J Q,CHANG W Q,et al.High temperature dry sliding friction and wear performance of laser cladding WC/Ni composite coating[J].Journal of Materials Engineering,2016,44(6):110-116.
[3] MINDIVAN H.Wear behavior of plasma and HVOF sprayed WC-12Co+6% ETFE coatings on AA2024-T6 aluminum alloy[J].Surface and Coatings Technology,2010,204(12):1870-1874.
[4] 王东生,田宗军,王松林,等.激光重熔等离子喷涂WC颗粒增强镍基涂层组织及高温磨损性能[J].焊接学报,2012,33(11):13-16.WANG D S,TIAN Z J,WANG S L,et al.High temperature wear behavior of WC particles reinforced Ni-based plasma-sprayed coating by laser remelting[J].Transactions of the China Welding Institution,2012,33(11):13-16.
[5] HULKA I,SERBAN V,SECOSAN I,et al.Wear properties of CrC-37WC-18M coatings deposited by HVOF and HVAF spraying processes[J].Surface and Coatings Technology,2012,210:15-20.
[6] WANG Q,CHEN Z,DING Z.Performance of abrasive wear of WC-12Co coatings sprayed by HVOF[J].Tribology International,2009,42(7):1046-1051.
[7] HONG S,WU Y,ZHENG Y,et al.Effect of spray parameters on the corrosion behavior of HVOF sprayed WC-Co-Cr coatings[J].Journal of Materials Engineering and Performance,2014,23(4):1434-1439.
[8] NAHVI S,JAFARI M.Microstructural and mechanical properties of advanced HVOF-sprayed WC-based cermet coatings[J].Surface and Coatings Technology,2016,286:95-102.
[9] RODRIGUEZ M,GIL L,CAMERO S,et al.Effects of the dispersion time on the microstructure and wear resistance of WC/Co-CNTs HVOF sprayed coatings[J].Surface and Coatings Technology,2014,258:38-48.
[10] 查柏林,高双林,乔素磊,等.超音速火焰喷涂参数及粉末粒度对WC-12Co涂层弹性模量的影响[J].材料工程,2015,43(4):92-97.ZHA B L,GAO S L,QIAO S L,et al.Influence of HVO-AF parameters and particle size on elastic modulus of WC-12Co coatings[J].Journal of Materials Engineering,2015,43(4):92-97.
[11] 王培铭,许乾慰.材料研究方法[M].北京:科学出版社,2005:145-146.WANG P M,XU Q W.Materials research methods[M].Beijing:Science Press,2005:145-146.
[12] HONG S,WU Y P,GAO W W,et al.Microstructural characterisation and microhardness distribution of HVOF sprayed WC-10Co-4Cr coating[J].Surface Engineering,2014,30(1):53-58.
[13] INOUE A,ZHANG T,MASUMOTO T.Al-La-Ni amorphous alloys with a wide supercooled liquid region[J].Materials Transactions,JIM,1989,30(12):965-972.
[14] ZHENG Z,LU W,HE D Y,et al.Microstructure and frictional behavior of Fe-based amorphous metallic coatings prepared by atmospheric plasma spraying[J].RARE Metal Materialsand Engineering,2011,40:160-165.
[15] LEE C,HAN J,YOON J,et al.A study on powder mixing for high fracture toughness and wear resistance of WC-Co-Cr coatings sprayed by HVOF[J].Surface and Coatings Technology,2010,204(14):2223-2229.
[16] LIMA C,LIBARDI R,CAMARGO F,et al.Assessment of abrasive wear of nanostructured WC-Co and Fe-based coatings applied by HP-HVOF,flame,and wire arc spray[J].Journal of Thermal Spray Technology,2014,23(7):1097-1104.
[17] WANG H,WANG X,SONG X,et al.Sliding wear behavior of nanostructured WC-Co-Cr coatings[J].Applied Surface Science,2015,355:453-460.
[18] 霍斯特·契可斯.摩擦学对摩擦润滑和磨损科学技术的系统分析[M].北京:机械工业出版社,1984:66-67.HORST C.Tribology:a systems approach to the science and technology of friction,lubrication and wear[M].Beijing:China Machine Press,1984:66-67.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[3] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[4] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[5] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[6] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[7] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[8] 王旭青, 彭子超, 罗学军, 马国君, 武丹. 时效制度对挤压+锻造工艺路线FGH95粉末高温合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 120-126.
[9] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[10] 邓运来, 邓舒浩, 叶凌英, 林森, 孙琳, 吉华. 焊后热处理对AA7204-T4铝合金搅拌摩擦焊接头组织与力学性能的影响[J]. 材料工程, 2020, 48(4): 131-138.
[11] 辛华, 刘建芳, 杨江鹏, 张辉, 赵星. 成膜基材对含氟丙烯酸酯/聚氨酯复合乳液自组织梯度化结构的影响[J]. 材料工程, 2020, 48(3): 59-65.
[12] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[13] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[14] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[15] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn