Please wait a minute...
 
材料工程  2017, Vol. 45 Issue (5): 46-51    DOI: 10.11868/j.issn.1001-4381.2016.000994
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氨基酸对水热合成羟基磷灰石纤维形貌的影响
齐美丽1,2,3, 肖桂勇1,2,3, 吕宇鹏1,2,3
1. 山东大学 材料液固结构演变与加工教育部重点实验室, 济南 250061;
2. 山东大学 材料科学与工程学院, 济南 250061;
3. 山东大学 苏州研究院, 江苏 苏州 215123
Effect of Amino Acids on Morphology of Hydrothermally Synthesized Hydroxyapatite Fibers
QI Mei-li1,2,3, XIAO Gui-yong1,2,3, LYU Yu-peng1,2,3
1. Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China;
2. School of Materials Science and Engineering, Shandong University, Jinan 250061, China;
3. Suzhou Institute, Shandong University, Suzhou 215123, Jiangsu, China
全文: PDF(3692 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以Ca(NO32·4H2O和(NH42HPO4的水溶液为前驱体,基于生物矿化的基本原理,利用水热法制备结晶度较高的羟基磷灰石(HA)纤维,重点研究酸性氨基酸L-谷氨酸(Glu)、中性氨基酸L-苯丙氨酸(Phe)和碱性氨基酸L-赖氨酸(Lys)的添加对产物物相和形貌的影响。结果表明:添加这3种氨基酸均对产物的物相影响不大,制得样品的主要组成相都是HA,部分样品含有少量碳酸钙。3种氨基酸的加入均改变纤维沿c轴生长的趋势:加入Glu后得到球状形貌的HA,Lys的加入使得产物形貌变得不均匀,而加入Phe后得到分散性较好的棒状纤维。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
齐美丽
肖桂勇
吕宇鹏
关键词 羟基磷灰石纤维氨基酸水热法形貌    
Abstract:Based on the basic principle of biomineralization, hydroxyapatite fiber (HAF) with high crystallinity was fabricated via a hydrothermal route with Ca(NO3)2·4H2O and (NH4)2HPO4 as the resources, respectively. Effects of the addition of acidic amino acid L-glutamic acid (Glu), neutral amino acid L-phenylalanine (Phe) and basic amino acid L-lysine (Lys) on the phase composition and morphology of the obtained products were laid special emphasis on. The results show that the products obtained by using the three amino acids are all hydroxyapatite (HA) phase with minor CaCO3 in some samples. Meanwhile, all of the amino acids inhibit the growth of the fibers. Spherical morphology exists when Glu is added, the homogeneity of the fibers deteriorates with the addition of Lys. However, rod-like fibers with good uniformity can be obtained with the addition of Phe.
Key wordshydroxyapatite fiber    amino acid    hydrothermal method    morphology
收稿日期: 2016-08-22      出版日期: 2017-05-17
中图分类号:  TB321  
通讯作者: 吕宇鹏(1970-),男,教授,博士,主要研究方向为生物材料及金属材料表面改性,联系地址:山东省济南市经十路17923号山东大学千佛山校区(250061),E-mail:biosdu@sdu.edu.cn     E-mail: biosdu@sdu.edu.cn
引用本文:   
齐美丽, 肖桂勇, 吕宇鹏. 氨基酸对水热合成羟基磷灰石纤维形貌的影响[J]. 材料工程, 2017, 45(5): 46-51.
QI Mei-li, XIAO Gui-yong, LYU Yu-peng. Effect of Amino Acids on Morphology of Hydrothermally Synthesized Hydroxyapatite Fibers. Journal of Materials Engineering, 2017, 45(5): 46-51.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.000994      或      http://jme.biam.ac.cn/CN/Y2017/V45/I5/46
[1] KOMLEV V S,BARINOV S M,KOPLIK E V. A method to fabricate porous spherical hydroxyapatite granules intended for time-controlled drug release[J]. Biomaterials, 2002, 23(16): 3449-3454.
[2] SADAT-SHOJAI M, MOHAMMAD-TAGHI K, EHSAN DINPANAH-KHOSHDARGI, et al. Synthesis methods for nanosized hydroxyapatite with diverse structures[J]. Acta Biomaterialia, 2013, 9(8): 7591-7621.
[3] QI M L, XIAO G Y, SHOKUHFAR T, et al. Flexible hydroxyapatite fiber precipitated by urea via hydrothemal route[J].Surface Innovation, 2017, DOI:10.1680/jsuin.16.00024.
[4] 龙剑平,郝孝丽,林金辉. 氟磷灰石的微乳液法制备及其表征[J].材料工程,2013,(7): 83-86. LONG J P, HAO X L, LIN J H. Preparation and characterization of fluoroapatite particles via microemulsion[J]. Journal of Materials Engineering, 2013, (7): 83-86.
[5] OTA Y, IWASHITA T,KASUGA T, et al. Novel preparation method of hydroxyapatite fibers [J]. Journal of the American Ceramic Society, 1998, 81(6): 1665-1668.
[6] TAS A C. Molten salt synthesis of calcium hydroxyapatite whiskers[J].Journal of the American Ceramic Society, 2001, 84(2): 295-300.
[7] QI M L, XIAO G Y, LU Y D. Rapid hydrothermal synthesis of submillimeter ultralong flexible hydroxyapatite fiber using different pH regulators[J]. Acta Metallurgica Sinica (English Letters),2016,29(7):609-613.
[8] ZHANG Y G, ZHY Y J, CHEN F. Highly porous ceramics based on ultralong hydroxyapatite nanowires[J]. RSC Advances, 2016, 6(104): 102003-102009.
[9] FRANCO P Q, JOÃO C F C, SILVA J C, et al. Electrospun hydroxyapatite fibers from a simple sol-gel system[J]. Materials Letters, 2012, 67(1): 233-236.
[10] 仲维卓,罗豪,黄宣威,等. 磷酸盐晶体中络阴离子结晶方位与晶体形态[J]. 无机材料学报, 1999,14(2): 223-227. ZHONG W Z, LUO H, HUANG X W, et al. Crystallographic orientation and morphology of anion coordination phosphate crystals[J]. Journal of Inorganic Materials, 1999,14(2): 223-227.
[11] AN L, LI W, XU Y, et al. Controlled additive-free hydrothermal synthesis and characterization of uniform hydroxyapatite nanobelts[J]. Ceramics International, 2015,42(2):3104-3112.
[12] YAN L, LI Y D, DENG Z X, et al. Surfactant-assisted hydrothermal synthesis of hydroxyapatite nanorods[J]. International Journal of Inorganic Materials,2001,3(7): 633-637.
[13] WANG Y J, CHEN J D, WEI K, et al. Surfactant-assisted synthesis of hydroxyapatite particles[J]. Materials Letters, 2006,60(27): 3227-3231.
[14] NGA N K, GIANG L T, HUY T Q, et al.Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering[J]. Colloids and Surfaces B Biointerfaces, 2014,116(14): 666-673.
[15] 高珊. 表面活性剂对羟基磷灰石纳米线合成的影响研究[D]. 山东:山东大学, 2012. GAO S. Study on the effect of surfactants on the synthesis of hydroxyapatite nanowire[D].Shandong:Shandong University,2012.
[16] 张海斌. 羟基磷灰石晶粒/粒子的水热控制合成[D]. 长沙:中南大学, 2011. ZHANG H B.Study on controlled synthesis of hydroxyapatite crystal/particle under hydrothermal condition[D].Changsha:Central South University,2011.
[17] GAO W M, RUAN C X, CHEN Y F. Effects of acidic amino acids on hydroxyapatite morphology[J]. Key Engineering Materials, 2007,336-338:2096-2099.
[18] MATSUMOTOA T, OKAZAKIB M, INOUE M, et al. Crystallinity and solubility characteristics of hydroxyapatite adsorbed amino acid[J].Biomaterials, 2002,23(10):2241-2247.
[19] KOUTSOPOULOS S, DALAS E. Inhibition of hydroxyapatite formation in aqueous solutions by amino acids with hydrophobic side groups[J].Langmuir, 2000, 16(16): 6739-6744.
[20] KOUTSOPOULOS S, DALAS E. The effect of acidic amino acids on hydroxyapatite crystallization[J].Journal of Crystal Growth, 2000,217(4):410-415.
[21] SPANOS N, KLEPETANIS P G, KOUTSOUKOS P G. Model studies on the interaction of amino acids with biominerals: the effect of L-serine at the hydroxyapatite-water interface[J].Journal of Colloid and Interface Science, 2001,236(2):260-265.
[22] JACK K S,TIMOTHY G V, TRAU M. Characterization and surface properties of amino-acid-modified carbonate-containing hydroxyapatite particles[J]. Langmuir, 2007,23(24):12233-12242.
[23] ROEDER K R, CONVERSE G L,LENG H, et al. Kinetic effects on hydroxyapatite whiskers synthesized by the chelate decomposition method[J]. Journal of the American Ceramic Society, 2006, 89(7): 2096-2104.
[24] VISWANATH B, RAVISHANKAR N. Controlled synthesis of plate-shaped hydroxyapatite and implications for the morphology of the apatite phase in bone[J]. Biomaterials, 2008, 29(36): 4855-4863.
[25] ZHANG H G, ZHU Q S, WANG Y. Morphologically controlled synthesis of hydroxyapatite with partial substitution of fluorine[J]. Chemistry of Materials, 2005, 17(23): 5824-5830.
[26] 齐美丽, 亓佳, 肖桂勇, 等. 表面活性剂对羟基磷灰石纤维形貌的影响[J]. 无机材料学报, 2016, 31(7): 726-730. QI M L, QI J, XIAO G Y, et al. Effect of surfactants on the morphology of hydroxyapatite fibers[J]. Journal of Inorganic Materials, 2016, 31(7): 726-730.
[27] QI M L, QI J, XIAO G Y, et al. One-step hydrothermal synthesis of carbonated hydroxyapatite porous microspheres with a large and uniform size regulated by L-glutamic acid [J]. Crystengcomm, 2016, 18(31): 5876-5884.
[28] BARTH A. The infrared absorption of amino acid side chains [J]. Progress in Biophysics and Molecular Biology, 2000, 74(3): 141-173.
[29] PALAZZON B, WALSH D, LAFISCO M, et al. Amino acid synergetic effect on structure, morphology and surface properties of biomimetic apatite nanocrystals[J]. Acta Biomaterialia, 2009, 5(4): 1241-1252.
[30] KOUTSOPOULOS S, DALAS E. The crystallization of hydro-xyapatite in the presence of lysine[J]. Journal of Colloid and Interface Science, 2000, 231(2): 207-212.
[31] YANG X D, XIE B Q, WANG L J, et al. Influence of magnesium ions and amino acids on the nucleation and growth of hydroxyapatite[J]. Crystengcomm, 2011, 13(4): 1153-1158.
[1] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[2] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 胶体纳米晶合成与形貌控制策略及机理[J]. 材料工程, 2020, 48(5): 23-30.
[3] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[4] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[5] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[6] 焦华, 赵康, 石蕊, 马利宁, 卞铁荣, 汤玉斐. 羟基磷灰石纳米棒的水热制备及其晶体生长机理研究[J]. 材料工程, 2020, 48(1): 136-143.
[7] 梁效铭, 钟溢健, 马丽丽, 李聪, 陈南春, 解庆林. 硅藻基As(Ⅴ)表面印迹材料的制备与表征[J]. 材料工程, 2020, 48(1): 156-161.
[8] 李嘉俊, 刘磊, 卢玉晓, 孙之剑, 马蕾. 纳米Li2MnSiO4正极材料的高压水热法制备及其电化学特性[J]. 材料工程, 2019, 47(9): 108-115.
[9] 刘琳, 李莹, 鄂涛, 杨姝宜, 姜志刚, 许丽岩, 张天琪. 球状纳米二氧化钛/石墨烯复合材料的合成及导电性能[J]. 材料工程, 2019, 47(8): 97-102.
[10] 袁姣娜, 王建利, 杨忠, 郭永春, 李建平. 合金成分对Mg-Zn-Y合金准晶形貌和体积分数的影响[J]. 材料工程, 2019, 47(3): 116-122.
[11] 张浩, 李海丽. 复合乳化剂作用下相变调湿复合材料的性能和机理[J]. 材料工程, 2019, 47(12): 157-162.
[12] 梁晓波, 李晓延, 姚鹏, 李扬, 金凤阳. 微电子封装中全Cu3Sn焊点形成过程中的组织演变及生长形貌[J]. 材料工程, 2018, 46(8): 106-112.
[13] 周堃, 刘杰, 赵宇. 硅橡胶密封件长期贮存老化行为[J]. 材料工程, 2018, 46(8): 163-168.
[14] 徐腾威, 甘国友, 严继康, 李震宇, 郭根生, 易健宏. CeO2掺杂对Pb0.92Sr0.06Ba0.02-(Sb2/3Mn1/3)0.05Zr0.48Ti0.47O3基压电陶瓷相结构及性能的影响[J]. 材料工程, 2018, 46(5): 139-144.
[15] 汤超, 陈花玲, 李博, 刘学婧. 软材料表面形貌调控与应用研究进展[J]. 材料工程, 2018, 46(3): 131-141.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn