Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 154-161    DOI: 10.11868/j.issn.1001-4381.2016.001322
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能
贺毅强1,2, 徐虎林1,2, 钱晨晨1, 冯立超1,2, 乔斌1,2, 尚峰1,2, 李化强1,2
1. 淮海工学院 机械与海洋工程学院, 江苏 连云港 222005;
2. 江苏省海洋资源开发研究院, 江苏 连云港 222005
Microstructure and mechanical properties of Cu/Al2O3 composite prepared by metal injection molding after mechanical alloying
HE Yi-qiang1,2, XU Hu-lin1,2, QIAN Chen-chen1, FENG Li-chao1,2, QIAO Bin1,2, SHANG Feng1,2, LI Hua-qiang1,2
1. School of Mechanical and Ocean Engineering, Huaihai Institute of Technology, Lianyungang 222005, Jiangsu, China;
2. Marine Resources Development Research Institute of Jiangsu, Lianyungang 222005, Jiangsu, China
全文: PDF(11390 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用机械合金化后注射成形制备10%(体积分数,下同)Cu/Al2O3复合材料,研究机械合金化时间、烧结温度对复合材料显微组织和性能的影响,并分析复合材料的增韧机理。结果表明:通过机械合金化10h后注射成形、脱脂、1550℃烧结工艺制备的10% Cu/Al2O3复合材料具有良好的抗弯强度和断裂韧度,分别为532MPa和4.97MPa·m1/2;烧结温度低于1550℃导致原子在固态下扩散能力不足,烧结温度高于1550℃则使颗粒边界移动速率大于孔隙逸出速率,二者都造成复合材料孔隙率增加,而导致材料的强度和韧度下降;机械合金化时间延长使复合材料晶粒细化、Cu与Al2O3之间的结合强度提高,材料强度和硬度提高,但断裂韧度下降;Cu粉末弥散分布于Al2O3基体中,抑制烧结过程中Al2O3晶粒粗化,且使裂纹在扩展过程中遇到延性的Cu产生裂纹桥联和偏转,提高材料的韧度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
贺毅强
徐虎林
钱晨晨
冯立超
乔斌
尚峰
李化强
关键词 氧化铝注射成形机械合金化增韧复合材料    
Abstract:10%(volume fraction)Cu/Al2O3 composite was prepared by the process of mechanical alloying and powder injection molding, the effect of alloying time and sintering temperature on microstructure and properties of the composite was investigated, and toughening mechanism of the composite was analyzed. The results show that 10%Cu/Al2O3 composite with good bending strength and fracture toughness can be prepared by the process of mechanical alloying for 10h, degreasing and then sintering at 1550℃. Bending strength and fracture toughness of the composite prepared by this process are up to 532MPa and 4.97MPa·m1/2 respectively. Due to weak diffusion of solid atoms for the composite being sintered below 1550℃, and mobility of particle boundaries being higher than pore escaping rate for the composite being sintered above 1550℃, porosity of the composite increases, and which results in strength and fracture toughness decreasing. Extending alloying time brings grain refinement and strong bonding between Cu and Al2O3 which is beneficial to elevate strength and hardness of the composite, while it is harmful to fracture toughness of the composite. Cu powders dispersing in the Al2O3 matrix protect the Al2O3 grains from coarsening during sintering process. And increasing in toughness of ceramic composite can be attributed to crack bridging and crack deflection when the cracks encounter the ductile Cu.
Key wordsalumina    injection molding    mechanical alloying    toughening    composite
收稿日期: 2016-11-07      出版日期: 2019-03-12
中图分类号:  TB333  
通讯作者: 贺毅强(1981-),男,博士,教授,研究方向:金属基复合材料,联系地址:江苏省连云港市海州区苍梧路59号淮海工学院机械工程系202室(222005),E-mail:ant210@126.com     E-mail: ant210@126.com
引用本文:   
贺毅强, 徐虎林, 钱晨晨, 冯立超, 乔斌, 尚峰, 李化强. 机械合金化后注射成形制备Cu/Al2O3复合材料的显微组织与力学性能[J]. 材料工程, 2019, 47(3): 154-161.
HE Yi-qiang, XU Hu-lin, QIAN Chen-chen, FENG Li-chao, QIAO Bin, SHANG Feng, LI Hua-qiang. Microstructure and mechanical properties of Cu/Al2O3 composite prepared by metal injection molding after mechanical alloying. Journal of Materials Engineering, 2019, 47(3): 154-161.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001322      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/154
[1] 范景莲,刘勋,黄伯云,等. Ni、Cu-Al2O3纳米金属陶瓷粉末的热压[J]. 粉末冶金技术, 2005, 23(2):120-124. FAN J L, LIU X, HUANG B Y, et al. Hot pressing of Ni-Al2O3/Cu-Al2O3 cermet nanopowder[J]. Powder Metallurgy Technology, 2005, 23(2):120-124.
[2] 刘向兵,贾成厂,王富祥,等. 用球化处理的粉末热压制备Cu-Al2O3复合材料[J]. 粉末冶金技术, 2007,25(2):129-134. LIU X B, JIA C C,WANG F X,et al. Cu-Al2O3 composite fabricated by hot pressing with sphericized powder[J]. Powder Metallurgy Technology, 2007,25(2):129-134.
[3] BAHRAINI M,WEBER L,NARCISO J,et al. Wetting in infiltra-tion of alumina particle preforms with molten copper[J]. Journal of Materials Science, 2005,40(9/10):2487-2491.
[4] 刘惠敏,王楠,苏娟. 原位Al2O3/Al-Cu复合材料的制备与组织研究[J].材料工程, 2014(11):23-27. LIU H M,WANG N,SU J. Preparation and microstructure of in-situ Al2O3/Al-Cu composite[J]. Journal of Materials Engine-ering,2014(11):23-27.
[5] GERMAN R M. Divergences in global powder injection moulding[J]. Powder Injection Moulding International, 2008, 2(1):45-49.
[6] ZHANG S X, ONG Z Y, LI T, et al. Ceramic composite comp-onents with gradient porosity by powder injection moulding[J]. Materials & Design,2010,31(6):2897-2903.
[7] LIANG S H,FAN Z K,XU L,et al. Kinetic analysis on Al2O3/Cu composite prepared by mechanical activation and internal oxidation[J]. Composites Part A:Applied Science and Manufacturing,2004,35(12):1441-1446.
[8] RAZAVI-TOUSI S S, RAD R, SALAHI E, et al. Production of Al-20 wt.% Al2O3 composite powder using high energy milling[J]. Powder Technology, 2009, 192(3):346-351.
[9] ZEBARJAD S M, SAJJADI S A.Microstructure evaluation of Al-Al2O3 composite produced by mechanical alloying method[J]. Materials & Design, 2006, 27(8):684-688.
[10] ZHAO N, NASH P, YANG X. The effect of mechanical alloying on SiC distribution and the properties of 6061 aluminum composite[J]. Journal of Materials Processing Technology, 2005,170(3):586-592.
[11] ZAWRAH M F, ZAYED H A, ESSAWY R A, et al. Prepara-tion by mechanical alloying, characterization and sintering of Cu-20wt.%Al2O3 nanocomposites[J]. Materials & Design, 2013,46:485-490.
[12] TOUSI S S R,RAD R Y,SALAHI E,et al.Production of Al-20 wt.% Al2O3 composite powder using high energy milling[J]. Powder Technology,2009,192(3):346-351.
[13] ZAWRAH M F, ESSAWY R A, ZAYED H A, et al. Mech-anical alloying,sintering and characterization of Al2O3-20wt%-Cu nanocomposite[J]. Ceramics International,2014,40(1):31-38.
[14] 陈振华. 现代粉末冶金技术[M]. 北京:化学工业出版社, 2013:245-246. CHEN Z H. Modern powder metallurgy technology[M]. Beijing:Chemical Industry Press, 2013:245-246.
[15] CHANDRASEKHAR S B, WAKEKAR N P, RAMAKRISH-NA M, et al. Dynamic strain ageing in fine grained Cu-1wt% Al2O3 composite processed by two step ball milling and spark plasma sintering[J]. Journal of Alloys and Compounds, 2016, 656:423-430.
[16] MADAVALI B, LEE J H,LEE J K,et al. Effects of atmosphere and milling time on the coarsening of copper powders during mechanical milling[J]. Powder Technology, 2014, 256:251-256.
[17] CAMPBELL S D, PELLETIER L B, POBER R L, et al. Dim-ensional and formation analysis of a restorative ceramic and how it works[J]. The Journal of Prosthetic Dentistry,1995,74(4):332-340.
[18] SHEHATA F, FATHY A, ABDELHAMEED M, et al. Prep-aration and properties of Al2O3 nanoparticle reinforced copper matrix composites by in situ processing[J]. Materials & Design,2009,30(7):2756-2762.
[1] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[2] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[3] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[4] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[5] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[6] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
[7] 陈振, 张增志, 丛中卉, 王立宁, 吴浩平. 开孔型聚合物发泡材料的研究及应用进展[J]. 材料工程, 2020, 48(3): 1-9.
[8] 孙志强, 张剑, 杨小波, 王华栋, 韩耀, 吕毅, 李淑琴. 球形纳米氧化铝颗粒制备微晶陶瓷及传质动力学研究[J]. 材料工程, 2020, 48(3): 127-133.
[9] 刘继涛, 钏定泽, 杨泽斌, 陈希亮, 颜廷亭, 陈庆华. 氨基酸/羟基磷灰石复合材料的制备与表征及其在酸蚀牛牙釉质体外再矿化中的应用[J]. 材料工程, 2020, 48(2): 100-107.
[10] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[11] 戚云超, 方国东, 梁军, 谢军波. 三维针刺C/C-SiC复合材料预制体工艺参数优化[J]. 材料工程, 2020, 48(1): 27-33.
[12] 董慧民, 闫丽, 安学锋, 钱黄海, 苏正涛, 益小苏. ESTM-fabric/3266复合材料低速冲击响应及冲击后压缩行为研究[J]. 材料工程, 2020, 48(1): 41-47.
[13] 张冰清, 杨小波, 孙志强, 苗镇江, 王华栋, 吕毅. 纤维增强石英复合材料的改性处理及性能研究[J]. 材料工程, 2020, 48(1): 48-53.
[14] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[15] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn