Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (4): 91-96    DOI: 10.11868/j.issn.1001-4381.2016.001419
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响
毕松1, 汤进1, 王鑫2, 侯根良1, 李军1, 刘朝辉1, 苏勋家3
1. 火箭军工程大学, 西安 710025;
2. 火箭军装备研究院, 北京 100085;
3. 西安纳科新材料科技有限公司, 西安 710038
Effect of proportion of nickel and zinc in coprecipitation method on absorption property of Ni0.5Zn0.5Fe2O4 prepared by two steps
BI Song1, TANG Jin1, WANG Xin2, HOU Gen-liang1, LI Jun1, LIU Chao-hui1, SU Xun-jia3
1. Rocket Force University of Engineering, Xi'an 710025, China;
2. Rocket Force Equipment Research Institute, Beijing 100085, China;
3. Xi'an Luck New Materials Co., Ltd., Xi'an 710038, China
全文: PDF(2863 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用共沉淀法和溶胶-凝胶法制备了纳米Ni0.5Zn0.5Fe2O4粉体。通过X射线衍射(XRD)、原子力显微镜(AFM)、矢量网络分析(VNA)等方法对4种不同添加比例的样品进行微观结构和电磁性能表征。结果表明:通过650℃煅烧,在4种添加比例下都得到了纯Ni0.5Zn0.5Fe2O4。制备的Ni0.5Zn0.5Fe2O4为球形,随着共沉淀过程中添加比例的增加,粒径先减小后增大,添加比例为60%时粒径最小,平均粒径约为44nm。在2~12.4GHz时,材料厚度越大,Ni0.5Zn0.5Fe2O4有效吸波频带越接近低频波段,且最大吸波强度达到-24.94dB。当添加比例为60%时,Ni0.5Zn0.5Fe2O4有效吸波频段为5.0~9.9GHz,有效吸波频带最宽,微波吸收性能最佳。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
毕松
汤进
王鑫
侯根良
李军
刘朝辉
苏勋家
关键词 Ni0.5Zn0.5Fe2O4共沉淀法溶胶-凝胶法微波吸收性能    
Abstract:Nano Ni0.5Zn0.5Fe2O4 powders were prepared by the coprecipitation method combined with sol-gel method. The microstructure and electromagnetic performance of the as-prepared four kinds of Ni0.5Zn0.5Fe2O4 samples with different addition proportion were characterized by X-ray diffraction, atomic force microscope (AFM), vector network analysis (VNA). The results show that the pure Ni0.5Zn0.5Fe2O4 is gained in each proportion under 650℃ calcination. The Ni0.5Zn0.5Fe2O4 particles are spherical, with the increase of adding proportion in coprecipitation process, particle size decreases first and then increases, the particles have the minimum size while the proportion is 60%, the average size is around 44nm. In the range of 2-12.4GHz, the greater the thickness of the material, the closer the effective absorption band of Ni0.5Zn0.5Fe2O4 is to the low frequency band, the maximum absorbing intensity of Ni0.5Zn0.5Fe2O4 can reach -24.94dB. While the proportion is 60%, the effective absorption band of Ni0.5Zn0.5Fe2O4 is 5.0-9.9GHz, the bandwith reaches maximum, and microwave absorption property is the best.
Key wordsNi0.5Zn0.5Fe2O4    coprecipitation method    sol-gel method    microwave absorption property
收稿日期: 2016-11-29      出版日期: 2019-04-19
中图分类号:  G305  
通讯作者: 毕松(1981-),男,副教授,硕士生导师,主要从事军用新材料的研究与制备等方面的研究工作,联系地址:陕西省西安市灞桥区洪庆街道同心路2号火箭军工程大学作战保障学院(710025),E-mail:xiaozhu-youyou@163.com     E-mail: xiaozhu-youyou@163.com
引用本文:   
毕松, 汤进, 王鑫, 侯根良, 李军, 刘朝辉, 苏勋家. 共沉淀过程中镍锌添加比例对两步法制备的Ni0.5Zn0.5Fe2O4吸波性能的影响[J]. 材料工程, 2019, 47(4): 91-96.
BI Song, TANG Jin, WANG Xin, HOU Gen-liang, LI Jun, LIU Chao-hui, SU Xun-jia. Effect of proportion of nickel and zinc in coprecipitation method on absorption property of Ni0.5Zn0.5Fe2O4 prepared by two steps. Journal of Materials Engineering, 2019, 47(4): 91-96.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001419      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/91
[1] LI Z J,HOU Z L,SONG W L,et al. Unusual continuous dual absorption peaks in Ca-doped BiFeO3 nanostructures for broa-dened microwave absorption[J]. Nanoscale,2016,8(19):10415-10424.
[2] BI S, MA L, MEI B, et al. Silicon carbide/carbon nanotube hete-rostructures:controllable synthesis, dielectric properties and mi-crowave absorption[J]. Advance Powder Technology,2014,25(4):1273-1279.
[3] 邹田春,冯振宇,赵乃勤,等. 活性炭纤维/树脂复合吸波材料的研究[J]. 材料工程,2011(2):22-25. ZOU T C,FENG Z Y,ZHAO N Q,et al. Microwave absorbing properties of activated carbon fibers/epoxy resin composites[J]. Journal of Materials Engineering,2011(2):22-25.
[4] FENG Y B,QIU T. Preparation, characterization and microwave absorbing properties of FeNi alloy prepared by gas atomization method[J]. Journal of Alloys and Compounds,2012,513:455-459.
[5] 赵海涛,张强,刘瑞萍,等. 单分散纳米锌铁氧体的制备及其磁性能[J]. 材料工程,2016,44(1):103-107. ZHAO H T,ZHANG Q,LIU R P,et al. Synthesis and magnetic properties of monodisperse ZnFe2O4 nanoparticle[J]. Journal of Materials Engineering,2016,44(1):103-107.
[6] KHADIJEH D,ELHAM Y,FARSHID N A,et al. Radar absor-ption properties of Ni0.5Zn0.5Fe2O4/PANI/epoxy nanocompo-sites[J]. Journal of the Chinese Chemical Society,2015,62(9):826-831.
[7] MADHU B J,GURUSIDDESH M,KIRAN T,et al. Structural, dielectric, ac conductivity and electromagnetic shielding properties of polyaniline/Ni0.5Zn0.5Fe2O4 composites[J]. J Mater Sci:Ma-ter Electron,2016,27(8):7760-7766.
[8] LUO J H,SHEN P,YAO W,et al. Synthesis, characterization, and microwave absorption properties of reduced graphene oxide/strontium ferrite/polyaniline nanocomposites[J]. Nanoscale Re-search Letters,2016,11(1):141-156.
[9] ZHANG H,HONG M,CHEN P,et al. 3D and ternary rGO/MCNTs/Fe3O4 composite hydrogels:synthesis characterization and their electromagnetic wave absorption properties[J]. Journal of Alloys and Compounds,2016,665:381-387.
[10] SUN Y Y,ZHANG W H,LI D S,et al. Facile synthesis of MnO2/rGO/Ni composite foam with excellent pseudocapacitive behavior for supercapacitors[J]. Journal of Alloys and Com-pounds,2016,649:579-584.
[11] GHAZZAWY E H,AMER M A. Structural, elastic and magnetic studies of the as-synthesized Co1-xSrxFe2O4 nanopar-ticles[J]. Journal of Alloys and Compounds,2017,690:293-303.
[12] 杨旭东,邹田春,陈亚军,等. 碳纳米管和氧化铝混杂增强铝基复合材料的制备及力学性能[J]. 材料工程,2016,44(7):67-72. YANG X D,ZOU T C,CHEN Y J,et al. Fabrication and mech-anical properties of aluminum matrix composites reinforced with carbon nanotubes and alumina[J]. Journal of Materials Engi-neering,2016,44(7):67-72.
[13] ALBUQUERQUE A S,ARDISSON J D,MACEDO W A,et al. Nanosized powders of NiZn ferrite:synthesis, structure, and magnetism[J]. Journal of Applied Physics,2000,87(9):4352-4356.
[14] OLHERO S M,SOMA D,AMARAL V S,et al. Co-precipitation of a Ni-Zn ferrite precursor powder:effects of heat treatment conditions and deagglomeration on the structure and magnetic properties[J]. Journal of the European Ceramic Society, 2012,32(10):2469-2476.
[15] MOHANMMAD A H,AYAH F S,NAJWA H,et al. Characterization of H2S gas sensor based on CuFe2O4 nanopar-ticles[J]. Journal of Alloys and Compounds,2017,690:461-468.
[16] BADU B C,RAO A V,RAVI M,et al. Structural, microstruc-tural, optical, and dielectric properties of Mn2+:willemite Zn2SiO4 nanocomposites obtained by a sol-gel method[J]. Journal of Molecul Structure,2017,1127:6-14.
[17] WU Y C,QI H J,LI H J,et al. Novel hydrophobic cotton fibers adsorbent for the removal of nitrobenzene in aqueous solution[J]. Carbohydrate Polymers,2017,155:294-302.
[18] 刘媛,刘玉存,王建华,等. 溶胶-凝胶法制备的纳米NixZn1-xFe2O4铁氧体[J]. 磁性材料及器,2011,42(1):20-22. LIU Y,LIU Y C,WANG J H,et al. The preparation of nanom-eter NixZn1-xFe2O4 ferrite by sol-gel method[J]. Magnetic Materials and Devices,2011,42(1):20-22.
[19] RAGHAVENDER A T,BILIKOV N,SKOKO Z,et al. XRD and IR analysis of nanocrystalline Ni-Zn ferrite synthesized by the sol-gel method[J]. Materials Letters,2011,65(4):677-680.
[20] SONG W L,GUAN X T,FAN L Z,et al. Turning three-dimensional textures with graphene aerogels for ultra-light flex-ible graphene/texture composites of effective electromagnetic shielding[J]. Carbon,2015,93:151-160.
[1] 刘明, 严继康, 杨钢, 姜贵民, 杜景红, 甘国友, 易健宏. 铜掺杂纳米二氧化钛颗粒的相变研究[J]. 材料工程, 2019, 47(4): 105-112.
[2] 李浩, 毕松, 侯根良, 苏勋家, 李军, 汤进, 林阳阳. 两步法中煅烧温度对Ni0.5Zn0.5Fe2O4电磁性能的影响[J]. 材料工程, 2019, 47(1): 64-69.
[3] 邹海强, 杨隽逸, 郑玉婴, 陈健, 卢秀恋. 液相共沉淀法制备MnO2/CNFs催化剂及其低温脱硝性能[J]. 材料工程, 2018, 46(9): 53-58.
[4] 周远良, 赛义德, 张黎, 贾韦迪, 段玉平, 董星龙. 树脂基Fe纳米粒子及碳纤维复合吸波平板的制备与性能[J]. 材料工程, 2018, 46(3): 41-47.
[5] 陈洁, 袁铁江. 柠檬酸根对纳米Fe3O4制备及其性能的影响[J]. 材料工程, 2015, 43(6): 85-89.
[6] 冯永宝, 唐传明, 丘泰. Fe85Si9.6Al5.4合金的制备、表征及其低频吸波性能[J]. 材料工程, 2014, 0(2): 1-6,12.
[7] 赵海涛, 刘瑞萍, 李成吾, 马瑞廷. 聚吡咯/Ni0.5Zn0.5Fe2O4复合物的合成与表征[J]. 材料工程, 2014, 0(12): 18-22.
[8] 任保轶, 王思林, 刘子儒, 张学军. 表面制备SiO2涂层的Ti2AlNb基合金高温氧化激活能研究[J]. 材料工程, 2013, 0(7): 6-10.
[9] 杨玉昌, 王锋, 胡剑青, 涂伟萍. 冷轧钢表面锆盐复合硅烷涂层的性能及结构研究[J]. 材料工程, 2013, 0(4): 50-55,62.
[10] 李文秀, 葛珂宁, 张兵, 陈立峰, 张志刚. 用于分离CH4/CO2疏水性SiO2膜的制备[J]. 材料工程, 2013, (2): 78-82.
[11] 胡志强, 黄德锋, 刘显卿, 高丽, 高宏. 纳米NiAl2O4粉体的制备与表征[J]. 材料工程, 2012, 0(8): 51-54,59.
[12] 王金香, 高岩, 杨洋, 钱潜, 刘银. Zn2+含量对纳米Ni-Zn铁氧体结构和磁性能的影响[J]. 材料工程, 2012, 0(10): 22-24,34.
[13] 郑育英, 廖世军, 黄慧民, 王俏运. NiO-YSZ纳米复合粉体的制备及其表征[J]. 材料工程, 2011, 0(8): 68-71.
[14] 赵宏生, 郭子斌, 李自强, 张凯红. 氮掺杂TiO2纳米粉体的制备及其可见光催化性能[J]. 材料工程, 2011, 0(3): 16-19,90.
[15] 马烽, 宗学刚, 陈明辉, 李永超. 月桂酸/二氧化硅复合相变储能材料的制备与性能[J]. 材料工程, 2010, 0(4): 15-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn