Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 90-95    DOI: 10.11868/j.issn.1001-4381.2016.001523
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
烧结温度对cBN-Al-Ti体系原位合成PcBN的影响
于文霖1,2,3, 吴一1,2,3, 吴新泽1, 莫培程1, 虞琦峰1
1. 桂林理工大学 材料科学与工程学院, 广西 桂林 541004;
2. 广西有色金属及材料加工重点实验室, 广西 桂林 541004;
3. 广西有色金属及特色材料加工国家重点实验室培育基地, 广西 桂林 541004
Effect of Sintering Temperature on In Situ Synthesis of Polycrystalline Cubic Boron Nitride in cBN-Al-Ti System
YU Wen-lin1,2,3, WU Yi1,2,3, WU Xin-ze1, MO Pei-cheng1, YU Qi-feng1
1. College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China;
2. Guangxi Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guilin 541004, Guangxi, China;
3. Guangxi Ministry-province Jointly-constructed Cultivation Base for State Key Laboratory of Processing for Non-ferrous Metal and Featured Materials, Guilin 541004, Guangxi, China
全文: PDF(2435 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用高温和超高压条件原位合成聚晶立方氮化硼(PcBN)。利用X射线衍射仪(XRD)、场发射扫描电镜(FSEM)、能谱分析(EDS)研究烧结温度对cBN-Al-Ti体系原位合成PcBN的物相、显微结构、相对密度、气孔率和力学性能的影响。结果表明:在超高压5.5GPa、高温1400~1600℃之间,随着烧结温度的升高,PcBN中的物相组分从中间相转变为稳定相TiB2、六方相氮化铝(hAlN)、TiN;PcBN中的cBN颗粒通过反应生成的物相彼此连接。随着烧结温度的增加,增强相棒状晶TiB2长度减小,表面气孔减少。断裂过程中存在棒状晶的拔出和断裂机制;气孔率随烧结温度的升高显著减小,相对密度增加;烧结温度为1600℃时,PcBN的综合力学性能最佳,显微硬度为44.1GPa,抗弯强度为859.3MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于文霖
吴一
吴新泽
莫培程
虞琦峰
关键词 PcBN烧结温度原位合成力学性能    
Abstract:Polycrystalline cubic boron nitride(PcBN) was prepared under a high temperature and an ultra-high pressure using an in situ synthesis method. The influence of sintering temperature on composition, micro-structure, relative density, porosity and mechanical property of the PcBN was investigated by means of X-ray diffraction(XRD), field scanning electron microscopy(FSEM) and energy dispersive spectroscopy(EDS). The results show that the composition of PcBN is translated from intermediate phases to stable phases consist of TiB2, h(hexagonal) AlN and TiN when increasing the sintering temperature in the range of 1400-1600℃ under ultrahigh pressure of 5.5GPa. The cBN particles connect with each other by the reaction product. With the increase of the sintering temperature, the length of rod-shaped crystals of strengthening phase TiB2 decreases and the pore in surface reduces. There exist the extraction and fracture mechanism of the rod-shaped crystals in the fracture process. The porosity is prominent reducing and the relative density increases when increasing the sintering temperature. With further increasing the sintering temperature to 1600℃, the PcBN exhibits optimal comprehensive mechanical properties with a micro-hardness of 44.1GPa and a flexural strength of 859.3MPa.
Key wordsPcBN    sintering temperature    in situ synthesis    mechanical property
收稿日期: 2016-12-18      出版日期: 2018-11-19
中图分类号:  TB333  
基金资助: 
通讯作者: 吴一(1958-),男,教授,博士,主要从事高性能cBN复合材料的制备研究工作,联系地址:广西桂林七星区建干路12号桂林理工大学材料科学与工程学院教三楼(541004),E-mail:wuyifirst@163.com     E-mail: wuyifirst@163.com
引用本文:   
于文霖, 吴一, 吴新泽, 莫培程, 虞琦峰. 烧结温度对cBN-Al-Ti体系原位合成PcBN的影响[J]. 材料工程, 2018, 46(11): 90-95.
YU Wen-lin, WU Yi, WU Xin-ze, MO Pei-cheng, YU Qi-feng. Effect of Sintering Temperature on In Situ Synthesis of Polycrystalline Cubic Boron Nitride in cBN-Al-Ti System. Journal of Materials Engineering, 2018, 46(11): 90-95.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.001523      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/90
[1] SHIGEAKI O,KENJI M,NAOHISA H,et al. In situ Raman spectroscopy of cubic boron nitride to 90GPa and 800K[J]. Journal of Physics and Chemistry of Solids,2015,76:120-124.
[2] 雒晓涛,杨冠军,李长久. 冷喷涂制备cBN-NiCrAl金属陶瓷涂层[J]. 材料工程,2009(增刊1):32-35. LUO X T,YANG G J,LI C J. Fabrication of cBN-NiCrAl cermet coating by cold spray[J]. Journal of Materials Engineering,2009,(Suppl 1):32-35.
[3] JOSEPH S,SUN T Y,FRANZ A M K,et al. In situ photoelectron spectroscopic characterization of c-BN films deposited via plasma enhanced chemical vapor deposition employing fluorine chemistry[J]. Diamond and Related Materials,2015,56:13-22.
[4] ZHAO Y B,PENG X H,FU T,et al. Molecular dynamics simulation of nano-indentation of (111) cubic boron nitride with optimized tersoff potential[J]. Applied Surface Science,2016,382:309-315.
[5] ANGSERYD J,ELFWING M,OLSSON E,et al. Detailed microstructure of a cBN based cutting tool material[J]. International Journal of Refractory Metals and Hard Materials,2009,27(2):249-255.
[6] 殷声,赖和怡,陈希成. 立方氮化硼烧结体的显微结构和烧结机理[J]. 硅酸盐学报,1984,12(4):450-455. YIN S,LAI H Y,CHEN X C. Microstructure and sintering mechanism of sintered cubic boron nitride materials[J]. Journal of the Chinese Ceramic Society,1984,12(4):450-455.
[7] 周爱国,李正阳,李良,等. Ti3SiC2 结合立方氮化硼超硬复合材料的制备与微观结构[J]. 硅酸盐学报,2014,42(2):220-224. ZHOU A G,LI Z Y,LI L,et al. Preparation and microstructure of Ti3SiC2 bonded cubic boron nitride superhard composites[J]. Journal of the Chinese Ceramic Society,2014,42(2):220-224.
[8] ZHAO Y C,WANG M Z. Preparation of polycrystalline cBN containing nanodiamond[J]. Journal of Materials Processing Technology,2008,198(1/3):134-138.
[9] ZHAO Y C,WANG M Z. Effect of sintering temperature on the structure and properties of polycrystalline cubic boron nitride prepared by SPS[J]. Journal of Materials Processing Technology,2009,209(1):355-359.
[10] QIAN J,MUKHOPADHYAY D,NGUYEN K D,et al. Sintering of polycrystalline boron nitride composites for in-situ synchrotron high pressure research[J]. International Journal of Refractory Metals and Hard Materials,2015,49:288-291.
[11] LV R,LIU J,LI Y J,et al. High pressure sintering of cubic boron nitride compacts with Al and AlN[J]. Diamond and Related Materials,2008,17(12):2062-2066.
[12] KOPACK J,KRAJNIK P. High-performance grinding-a review[J]. Journal of Materials Processing Technology,2006,175(1/3):278-284.
[13] NEO K S,RAHMAN M,LI X P,et al. Performance evaluation of pure cBN tools for machining of steel[J]. Journal of Materials Processing Technology,2003,140(1/3):326-331.
[14] RONG X Z,TSURUMI T,FUKUNAGA O,et al. High-pressure sintering of cBN-TiN-Al composite for cutting tool application[J]. Diamond and Related Materials,2002,11(2):280-286.
[15] BENKO E,KLIMCZYK P,MORGIEL J,et al. Electron microscopy investigations of the cBN-Ti compound composites[J]. Materials Chemistry and Physics,2003,81:336-340.
[16] FARAN E,GOTMAN I,GUTMANAS E Y. Experimental study of the reaction zone at boron nitride ceramic-Ti metal interface[J]. Materials Science and Engineering:A,2000,288(1):66-74.
[17] 赵兴利. 新型聚晶立方氮化硼(PcBN)刀具材料研制及其切削机理研究[D]. 济南:山东大学,2011. ZHAO X L. Study on the preparation and cutting mechanism of new polycrystalline cubic boron nitride[D]. Jinan:Shandong University,2011.
[18] KLIMCZYK P,BENKO E,LAWNICZAK-JABLONSKA K,et al. Cubic boron nitride-Ti/TiN composites:hardness and phase equilibrium as function of temperature[J]. Journal of Alloys and Compounds,2004,382:195-205.
[19] HYMAN M E,McCULLOUGH C,LEVI C G,et al. Evolution of boride morphologies in TiAl-B alloys[J]. Metallurgical and Materials Transactions A,1991,22(7):1647-1662.
[20] 赵玉成,王明智. Al与cBN在高温高压下的相互作用[J]. 无机材料学报,2008,23(2):253-256. ZHAO Y C,WANG M Z. Interaction of Al and cBN under high temperature and high pressure[J]. Journal of Inorganic Materials,2008,23(2):253-256.
[21] 王军丽. PLLA基复合材料的结晶行为及力学性能的研究[D]. 郑州:郑州大学,2015. WANG J L. Crystallization behavior and mechanical properties of PLLA matrix composites[D]. Zhengzhou:Zhengzhou University,2015.
[22] 赵龙志,焦宇,赵明娟,等. 保温时间对Al-Fe-Si/Al原位复合材料力学性能的影响[J]. 材料工程,2014(1):35-40,46. ZHAO L Z,JIAO Y,ZHAO M J,et al. Effect of holding time on mechanical properties of Al-Fe-Si/Al in-situ composites[J]. Journal of Materials Engineering,2014(1):35-40,46.
[23] 刘文辉,何圳涛,唐昌平,等. 变形条件对2519A铝合金动态力学性能与组织演化的影响[J]. 材料工程,2016,44(1):47-53. LIU W H,HE Z T,TANG C P,et al. Effect of deformation condition on dynamic mechanical properties and microstructure evolution of 2519A aluminum alloy[J]. Journal of Materials Engineering,2016,44(1):47-53.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[7] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[8] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[9] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[10] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[11] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[12] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[13] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[14] 刘天豪, 郭胜锋. 铁基块体非晶合金的形成规律与力学性能研究进展[J]. 材料工程, 2020, 48(11): 46-57.
[15] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn