Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (2): 43-48    DOI: 10.11868/j.issn.1001-4381.2016.02.007
  材料与工艺 本期目录 | 过刊浏览 | 高级检索 |
聚丙烯酸/聚丙烯复合塑料的制备及其阻垢性能
黄海滨1,2, 马敬环1,2,3, 赵孔银1, 郑海燕1,2, 刘莹1,2, 周晓峰1
1. 中空纤维膜材料与膜过程省部共建国家重点实验室培育基地, 天津 300387;
2. 天津工业大学 环境与化学工程学院, 天津 300387;
3. 天津滨瀚环保科技发展有限公司, 天津 300450
Synthesis and Scale Inhibition Performance of Polyacrylic Acid/Polypropylene Composite Plastics
HUANG Hai-bin1,2, MA Jing-huan1,2,3, ZHAO Kong-yin1, ZHENG Hai-yan1,2, LIU Ying1,2, ZHOU Xiao-feng1
1. State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin 300387, China;
2. School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387, China;
3. BIN HAN Eco-technologies Co., Ltd., Tianjin 300450, China
全文: PDF(2085 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以低分子量聚丙烯酸(PAA)共混改性聚丙烯(PP)制得1种具有阻垢效果的聚丙烯酸/聚丙烯(PAA-PP)复合塑料。以乙二胺四乙酸二钠(EDTA)络合滴定法评定PAA-PP复合塑料的阻垢性能,通过扫描电镜(SEM)观测塑料表面形貌并对CaCO3垢样进行分析。结果表明:PAA-PP复合塑料具有良好的阻垢效果,1.55%PAA含量的PAA-PP复合塑料最高阻垢率达92.77%;在PAA-PP复合塑料表面,CaCO3晶粒变小,不容易正常成核生长且规则有序地在其表面排列。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
黄海滨
马敬环
赵孔银
郑海燕
刘莹
周晓峰
关键词 聚丙烯共混改性聚丙烯酸阻垢    
Abstract:Low-molecular weight polyacrylic acid(PAA) was used for blending modified poly-propylene(PP) to prepare polyacrylic acid/polypropylene composite plastics(PAA-PP)with scale inhibiting effect. By using the EDTA complex metric titration method, the scale inhibition performance of PAA-PP composite plastics was investigated. The surface morphology of PAA-PP was observed by scanning electron microscopy(SEM) and the CaCO3 fouling sample was analysized.The results show that the PAA-PP composite plastics has good scale inhibiting effect, when the content of PAA is 1.55%, the high scale inhibition rate can reach 92.77%;The results show that the calcium carbonate scale grains become smaller and not easy to have nucleation growth and grow regularly and adhere on the surface of the PAA-PP composite plastics.
Key wordspolypropylene    blending modification    poly-acrylic acid    scale inhibition
收稿日期: 2014-08-11      出版日期: 2016-02-22
中图分类号:  TB34  
通讯作者: 马敬环(1964-),女,教授,博士生导师,从事水处理研究,联系地址:天津市西青区宾水西道延长线399号天津工业大学环境与化学工程学院(300387),E-mail:13920893096@163.com     E-mail: 13920893096@163.com
引用本文:   
黄海滨, 马敬环, 赵孔银, 郑海燕, 刘莹, 周晓峰. 聚丙烯酸/聚丙烯复合塑料的制备及其阻垢性能[J]. 材料工程, 2016, 44(2): 43-48.
HUANG Hai-bin, MA Jing-huan, ZHAO Kong-yin, ZHENG Hai-yan, LIU Ying, ZHOU Xiao-feng. Synthesis and Scale Inhibition Performance of Polyacrylic Acid/Polypropylene Composite Plastics. Journal of Materials Engineering, 2016, 44(2): 43-48.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.02.007      或      http://jme.biam.ac.cn/CN/Y2016/V44/I2/43
[1] CHAUHAN K, KUMAR R, KUMAR M, et al. Modified pectin-based polymers as green antiscalants for calcium sulfate scale inhibition[J]. Desalination, 2012, 305(12):31-37.
[2] KUMAR A S, SASIKUMAR A. Studies on novel silicone/phosphorus/sulphur containing nano-hybrid epoxy anticorrosive and antifouling coatings[J]. Progress in Organic Coatings, 2010, 68(3):189-200.
[3] YEBRA D M, KⅡL S, DAM J K. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings[J]. Progress in Organic Coatings, 2004, 50(2):75-104.
[4] MARÉCHAL J P, HELLIO C. Challenges for the Development of new non-toxic antifouling solutions[J]. International Journal of Molecular Sciences, 2009, 10(11):4623-4637.
[5] 陈美玲,庄立,高宏.丙烯酸锌复合防污涂料的制备与防污性能评价[J]. 材料工程,2008,(6):53-56. CHEN Mei-ling, ZHUANG Li, GAO Hong. Preparation and performance evaluation of zinc acrylate compound antifouling paint[J]. Journal of Materials Engineering, 2008,(6):53-56.
[6] NGUYEN T D H, PERRIN F X, NGUYEN D L. New hybrid materials based on poly(ethyleneoxide)-grafted polysilazane by hydrosilylation and their anti-fouling activities[J]. Beilstein Journal of Nanotechnol, 2013,(4):671-677.
[7] TU Q, WANG J, LIU R, et al. Antifouling properties of poly(dimethylsiloxane) surfaces modified with quaternized poly(dimethylaminoethyl methacrylate)[J]. Colloids and Surfaces B:Biointerfaces, 2013, 102:361-370.
[8] BERTO D, BRUSÀ R B, CACCIATORE F, et al. Tin free antifouling paints as potential contamination source of metals in sediments and gastropods of the southern Venice lagoon[J]. Continental Shelf Research, 2012, 45:34-41.
[9] SINGH N, TURNER A. Trace metals in antifouling paint particles and their heterogeneous contamination of coastal sediments[J]. Marine Pollution Bulletin, 2009, 58(4):559-564.
[10] 王立国,王世昌,朱爱梅,等.塑料换热器在海水淡化中的应用[J]. 化工进展,2004,23(12):1359-1361. WANG Li-guo, WANG Shi-chang, ZHU Ai-mei, et al. Application of plastic heat exchangers in desalination[J]. Chemical Industry and Engineering Progress, 2004, 23(12):1359-1361.
[11] 宋赛楠,曹庚振,王霞,等.聚丙烯塑料的改性研究[J]. 塑料工业,2011,39(增刊1):57-59. SONG Sai-nan, CAO Geng-zhen, WANG Xia, et al. The research of the polypropylene modification methods[J]. China Plastics Industry, 2011, 39(Suppl 1):57-59.
[12] 高军.聚丙烯的共混改性研究[J]. 化工时刊,2006,20(6):52-55. GAO Jun. Research of polypropylene co-mixing modification[J]. Chemical Industry Times, 2006, 20(6):52-55.
[13] YUE W, PARK R J, KULAK A N, et al. Macroporous inorganic solids from a biomineral template[J]. Journal of Crystal Growth, 2006, 294(1):69-77.
[14] ABDEL A N, SATOH K, SAWADA K. Study of the adhesion mechanism of CaCO3 using a combined bulk chemistry/QCM technique[J]. Journal of Crystal Growth, 2002, 245(1-2):87-100.
[15] BANSAL B, CHEN X D, MVLLER S H. Analysis of "classical" deposition rate law for crystallisation fouling[J]. Chemical Engineering and Processing, 2008, 47(8):1201-1210.
[16] ANDRITSOS N, KARABELAS A J. Calcium carbonate scaling in a plate heat exchanger in the presence of particles[J]. International Journal of Heat and Mass Transfer, 2003, 46(24):4613-4627.
[17] AL A A, EAST C P, DOHERTY W O S, et al. Inhibition of homogenous formation of calcium carbonate by poly(acrylic acid). The effect of molar mass and end-group functionality[J]. Desalination, 2014, 338:93-105.
[18] BHUSHAN B, JUNG Y C, KOCH K. Micro-, nano-and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion[J]. Philosophical Transactions of the Royal Society:A, 2009, 367(1894):1631-1672.
[1] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[2] 徐建林, 刘晓琦, 杨文龙, 牛磊, 赵金强. Nano-Sb2O3/BEO/PP复合材料阻燃性能[J]. 材料工程, 2019, 47(1): 84-90.
[3] 鲁雄, 杨旭静, 段书用, 郑娟. 玻纤增强聚丙烯复合材料的应变率敏感特性[J]. 材料工程, 2018, 46(4): 146-151.
[4] 雷帅, 张校, 钟珊, 刘正博, 曹维宇, 徐樑华. 聚丙烯腈热稳定化纤维的裂解行为[J]. 材料工程, 2017, 45(5): 59-63.
[5] 何聪, 欧宝立, 李政峰. 氧化石墨烯对聚丙烯/尼龙6两组分聚合物的增容作用[J]. 材料工程, 2017, 45(3): 13-16.
[6] 何跃, 蒋团辉, 刘阳夫, 龚维, 何力. 橡胶粒子对微发泡聚丙烯复合材料发泡行为与力学性能的影响[J]. 材料工程, 2017, 45(2): 80-87.
[7] 刘伯威, 李亚林, 刘咏, 杨阳, 唐兵, 匡湘铭. 聚丙烯腈纤维对汽车摩擦材料性能的影响[J]. 材料工程, 2017, 45(10): 103-110.
[8] 钱金鑫, 李明愉, 冯长根. 亚胺基二乙酸螯合纤维的合成与性能研究[J]. 材料工程, 2016, 44(7): 54-60.
[9] 侯桂香, 谢建强, 姚少巍, 张翠云. PAN/插层高岭石复合材料制备及静电纺丝性能[J]. 材料工程, 2015, 43(10): 49-54.
[10] 李亮, 肖长发, 黄庆林, 胡晓宇. PTFE/PAN共混中空纤维膜的制备与性能[J]. 材料工程, 2013, 0(1): 12-15,20.
[11] 杨继年, 李子全. PP-g-MAH改性SGF/PP泡沫复合材料的结构与力学性能研究[J]. 材料工程, 2012, 0(11): 57-60,65.
[12] 张艳梅, 孟平蕊, 王晓慧, 于浩强, 李良波. PVA基聚离子复合物膜的结构与性能研究[J]. 材料工程, 2011, 0(6): 63-66.
[13] 姜兆辉, 付鹏, 金剑, 肖长发, 李鑫, 孔令熙. 基于TEM图像的炭黑在聚合物基体中分散性的定量表征[J]. 材料工程, 2011, 0(10): 72-77.
[14] 赵彦生, 马德鹏, 吴凤龙, 陈凯, 刘永梅, 魏华, 吴永新. 两种核-壳结构复合微球对聚丙烯的改性研究[J]. 材料工程, 2011, 0(1): 72-75,80.
[15] 华中, 杨玉蓉, 袁媛, 杨永岗, 曹霞, 王志英. 聚丙烯腈纤维预氧化过程中微观结构的演变[J]. 材料工程, 2009, 0(9): 61-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn