Please wait a minute...
 
材料工程  2016, Vol. 44 Issue (3): 97-102    DOI: 10.11868/j.issn.1001-4381.2016.03.016
  测试与表征 本期目录 | 过刊浏览 | 高级检索 |
热连轧GH4169合金的点阵常数与蠕变性能
李振荣1, 马春蕾1, 蒋成勇1, 田素贵2, 陈礼清3, 刘相华3
1. 辽宁大学轻型产业学院, 沈阳 110036;
2. 沈阳工业大学材料科学与工程学院, 沈阳 110870;
3. 东北大学轧制技术及连轧自动化国家重点实验室, 沈阳 110819
Lattice Parameters and Creep Properties of Tandem Hot Rolled GH4169 Alloy
LI Zhen-rong1, MA Chun-lei1, JIANG Cheng-yong1, TIAN Su-gui2, CHEN Li-qing3, LIU Xiang-hua3
1. College of Light Industry, Liaoning University, Shenyang 110036, China;
2. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China;
3. State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
全文: PDF(5609 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过对热连轧GH4169合金进行热处理、组织形貌观察、点阵常数测定及蠕变性能测试,研究热连轧GH4169合金的点阵常数与蠕变行为。结果表明:热连轧GH4169合金主要由γ基体、γ'和γ"相组成,经标准热处理后,合金中部分粒状γ'相重溶,且又在基体中析出扁平状γ"相;经X射线衍射分析表明,与热连轧合金相比,THR-ST-GH4169合金中γ基体、γ'和γ"相的点阵常数较小,但各相之间具有较大的晶格错配度,可有效阻碍位错运动,是合金具有较高蠕变抗力和较长蠕变寿命的重要因素之一;在蠕变期间,热连轧合金的主要变形机制为位错的双取向滑移,而在THR-ST-GH4169合金中,可形成形变孪晶和发生位错滑移。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李振荣
马春蕾
蒋成勇
田素贵
陈礼清
刘相华
关键词 热连轧GH4169合金组织结构点阵常数蠕变特征    
Abstract:The lattice parameters and creep behaviors of tandem hot tolled GH4169 alloy were investigated by means of heat treatment, microstructure observation, lattice parameter determination and creep property measurement. The results show that the microstructure of tandem hot tolled GH4169 alloy mainly consists of γ, γ' and γ" phases. After standard heat treatment, some of granular γ' phase remelts, and separates out flat-like γ" phase in the alloy. Comparing with THR-GH4169 alloy, by X-ray analysis, the γ, γ' and γ" phases of THR-ST-GH4169 alloy possess smaller lattice parameters and larger lattice misfits among the phases, which may effectively restrain the dislocation movement, and is one of main important factors for the alloy possessing better creep resistance and longer creep life. During creep, the main deformation mechanism of THR-GH4169 alloy is that the dislocations with double orientations slip in the alloy. While the deformed twins and slipping dislocations may be activated in the THR-ST-GH4169 alloy.
Key wordstandem hot rolled GH4169 alloy    microstructure    lattice parameter    creep feature
收稿日期: 2014-06-18      出版日期: 2016-03-22
中图分类号:  TG166  
通讯作者: 李振荣(1962-),女,博士,教授,从事耐热材料的组织与性能研究,联系地址:沈阳市皇姑区崇山路中路66号辽宁大学轻型产业学院(110036),E-mail:lzr621206@126.com     E-mail: lzr621206@126.com
引用本文:   
李振荣, 马春蕾, 蒋成勇, 田素贵, 陈礼清, 刘相华. 热连轧GH4169合金的点阵常数与蠕变性能[J]. 材料工程, 2016, 44(3): 97-102.
LI Zhen-rong, MA Chun-lei, JIANG Cheng-yong, TIAN Su-gui, CHEN Li-qing, LIU Xiang-hua. Lattice Parameters and Creep Properties of Tandem Hot Rolled GH4169 Alloy. Journal of Materials Engineering, 2016, 44(3): 97-102.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2016.03.016      或      http://jme.biam.ac.cn/CN/Y2016/V44/I3/97
[1] NOWOTNIK A, SIENIAWSKI J, MROWKA-NOWOTNIK G. Identification of dynamically precipitated phases in hot-working Inconel 718 alloy[J]. Journal of Achievements in Materials and Manufacturing Engineering, 2008, 31(2):275-280.
[2] NING Y Q, FU M W, CHEN X. Hot deformation behavior of GH4169 superalloy associated with stick δ phase dissolution during isothermal compression process[J]. Mater Sci Eng A, 2012, 540(1):164-173.
[3] 张丽, 吴学仁.基于小裂纹理论的GH4169高温合金的疲劳全寿命预测[J].航空材料学报, 2014, 34(6):75-83. ZHANG Li, WU Xue-ren. Fatigue-life prediction method based on small-crack theory in GH4169 superalloy[J].Journal of Aeronautical Materials,2014, 34(6):75-83.
[4] WANG Z T, ZHANG S H. Kinematics and dynamics model of GH4169 alloy for thermal deformation[J]. Journal of Iron and Steel Research International, 2010, 17(7):75-78.
[5] XU S G, CAO Q X. Numerical simulation of the microstructure in the ring rolling of hot steel[J]. J Mater Process Technol, 1994, 43(2-4):221-235.
[6] 刘劲松,袁兆静,张海燕,等. GH4169合金的高温变形行为[J]. 材料热处理学报, 2012, 33(10):43-48. LIU Jing-song, YUAN Zhao-jing, ZHANG Hai-yan, et al. High temperature deformation behavior of GH4169 alloy[J]. Transactions of Materials and Heat Treatment, 2012, 33(10):43-48.
[7] 韦家虎, 董建新, 喻健, 等.GH4169合金双锥实验组织模拟与验证研究[J]. 材料工程, 2013,(8):70-74. WEI Jia-hu, DONG Jian-xin, YU Jian, et al. GH4169 alloy hot deformation prediction model of microstructure evolution[J]. Journal of Materials Engineering, 2013,(8):70-74.
[8] 谢锡善, 董建新, 付书红, 等. γ"和γ'相强化的Ni-Fe基高温合金GH4169的研究与发展[J]. 金属学报, 2010, 46(11):1289-1302. XIE Xi-shan, DONG Jian-xin, FU Shu-hong, et al. Research and development of γ" and γ' strengthened Ni-Fe base superalloy GH4169[J]. Acta Metallurgica Sinica, 2010, 46(11):1289-1302.
[9] 李振荣, 田素贵, 赵忠刚, 等. 热连轧GH4169合金组织结构与蠕变变形及断裂机制[J]. 沈阳工业大学学报,2011, 33(6):649-654. LI Zhen-rong, TIAN Su-gui, ZHAO Zhong-gang, et al. Microstructure, creep deformation and fracture mechanism of hot continuous rolled GH4169 superalloy[J]. Journal of Shenyang University of Technology, 2011, 33(6):649-654.
[10] TIAN S G, LI Z R, ZHAO Z G, et al. Influence of deformation level on microstructure and creep behavior of GH4169 alloy[J]. Mater Sci Eng A, 2012, 550:235-242.
[11] 李振荣,田素贵,赵中钢,等. 热处理对热连轧GH4169合金蠕变性能的影响[J]. 材料热处理学报, 2011, 32(12):7-12. LI Zhen-rong, TIAN Su-gui, ZHAO Zhong-gang, et al. GH4169 superalloy hot continuous rolling heat treatment microstructure creep deformation feature[J]. Transactions of Materials and Heat Treatment, 2011, 32(12):7-12.
[12] 张义文, 王福明, 胡本芙. Hf含量对FGH97合金γ/γ'晶格错配度的影响[J]. 稀有金属材料与工程, 2012,41(6):989-993. ZHANG Yi-wen, WANG Fu-ming, HU Ben-fu, et al. Effects of hafnium content on γ/γ' misfit in FGH97 PM superalloy[J]. Rare Materials and Engineering, 2012,41(6):989-993.
[13] 谢君,田素贵,周晓明,等. FGH95镍基合金组织结构对持久性能的影响[J]. 中南大学学报(自然科学版), 2012,43(7):2547-2553. XIE Jun, TIAN Su-gui, ZHOU Xiao-ming, et al. Influence of microstructure on enduring properties of FGH95 nickel-base superalloy[J]. Journal of Central South University (Science and Technology), 2012,43(7):2547-2553.
[14] MUKHERJI D, GILLES R, BARBIER B, et al. Lattice misfit measurement in Inconel 706 containing coherent γ' and γ" precipitates[J]. Scripta Mater, 2003, 48(4):333-339.
[15] 田素贵, 赵忠刚, 陈礼清, 等. 直接时效处理对热连轧GH4169合金蠕变行为的影响[J]. 航空材料学报, 2010, 30(5):14-18. TIAN Su-gui, ZHAO Zhong-gang, CHEN Li-qing, et al. Influence of direct aged treatment on creep behaviors of hot continuous rolling GH4169 superalloy[J]. Journal of Aeronautical Materials, 2010, 30(5):14-18.
[16] 董建新, 谢锡善, 王宓. GH169高温合金主要相分析[J]. 兵器材料科学与工程, 1993, 16(2):50-53. DONG Jian-xin, XIE Xi-shan, WANG Mi. Analysis of main phases in GH4169 superalloy[J]. Ordnance Material Science and Engineering, 1993, 16(2):50-53.
[17] 张俊善. 材料的高温变形与断裂[M]. 北京:科学出版社, 2007. 103-105. ZHANG Jun-shan. High Temperature Deformation and Fracture of Materials[M]. Beijing:Science Press, 2007. 103-105.
[1] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[2] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[3] 张曼莉, 邱长军, 蒋艳林, 郑文权, 夏琰. 激光原位合成Al2O3-TiO2复合陶瓷涂层组织结构与性能[J]. 材料工程, 2018, 46(2): 57-65.
[4] 刘用, 马胜国, 刘英杰, 张腾, 杨慧君. AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J]. 材料工程, 2018, 46(2): 99-104.
[5] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
[6] 谢春晓, 钟守炎, 杨元政, 罗剑英, 廖梓龙. 热处理对(Fe0.52Co0.30Ni0.18)73Cr17Zr10非晶合金的组织结构及磁性能的影响[J]. 材料工程, 2016, 44(8): 46-50.
[7] 谢红波, 刘贵仲, 郭景杰. Zr元素对AlFeCrCoCuZrx高熵合金组织及腐蚀性能的影响[J]. 材料工程, 2016, 44(6): 44-49.
[8] 胡振峰, 吕镖, 汪笑鹤, 徐滨士. 相对运动速度对电刷镀镍镀层组织结构和性能的影响[J]. 材料工程, 2014, 0(5): 12-16.
[9] 王洪涛, 陈枭, 纪岗昌, 白小波, 董增祥, 仪登亮. 冷喷涂WC-Co涂层的组织结构和性能研究[J]. 材料工程, 2013, 0(10): 29-35.
[10] 秦优琼, 于治水. 钎焊工艺参数对C/C复合材料/Cu/Mo/TC4 钎焊接头微观组织的影响[J]. 材料工程, 2012, 0(8): 78-82.
[11] 张志强, 李国禄, 王海斗, 徐滨士, 朴钟宇. 等离子喷涂Fe基合金涂层组织及接触疲劳损伤性能的研究[J]. 材料工程, 2012, 0(6): 59-62.
[12] 田素贵, 李振荣, 赵忠刚, 陈礼清, 刘相华. 冷却方式对热连轧GH4169合金组织与蠕变行为的影响[J]. 材料工程, 2012, 0(10): 1-7.
[13] 马旭梁, 李莉, 朱成武, 王香, 郑玉峰. 多孔NiTi形状记忆合金的制备及性能[J]. 材料工程, 2011, 0(3): 6-10,59.
[14] 朱有利, 李占明, 何嘉武, 汪勇. 超声冲击处理2A12铝合金焊缝表层微观组织结构变化[J]. 材料工程, 2009, 0(7): 79-82.
[15] 程江波, 梁秀兵, 徐滨士, 吴毅雄. 铁基非晶纳米晶涂层组织及磨损性能研究[J]. 材料工程, 2009, 0(5): 17-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn