Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (9): 65-72    DOI: 10.11868/j.issn.1001-4381.2017.000311
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
复合材料基片式光纤光栅传感器的制造与性能
高琳琳1, 王庆林1, 郭云力1, 叶慧1, 姜明顺2, 贾玉玺1
1. 山东大学 材料科学与工程学院, 济南 250061;
2. 山东大学 控制科学与工程学院, 济南 250061
Fabrication and Performance of Optical Fiber Grating Sensors Packaged in Composite Substrate
GAO Lin-lin1, WANG Qing-lin1, GUO Yun-li1, YE Hui1, JIANG Ming-shun2, JIA Yu-xi1
1. School of Materials Science and Engineering, Shandong University, Jinan 250061, China;
2. School of Control Science and Engineering, Shandong University, Jinan 250061, China
全文: PDF(3161 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于光纤光栅传感原理,设计、制造了一种玻璃纤维/环氧树脂复合材料基片式光纤Bragg光栅(FBG)传感器。该传感器采用玻璃纤维/环氧树脂复合材料层合板作为基板,干态玻璃纤维布作为覆盖层,采用真空辅助灌注液态环氧树脂的方法将FBG封装于底部基板与上层玻璃纤维布之间。在制备玻璃纤维/环氧树脂复合材料基板的过程中,分别采用一次性完全固化和预固化的制备工艺。通过对比实验结果发现:当玻璃纤维/环氧树脂复合材料基板采用一次性完全固化成型工艺时,传感器温度响应的线性度和重复性较差,相对重复性误差高达10.90%,线性拟合度仅为0.99871;当玻璃纤维/环氧树脂复合材料基板在光纤光栅封装之前采用预固化成型工艺、在封装完成后整体进行二次固化时,传感器温度响应的相对重复性误差仅为1.87%,线性拟合度为0.99998,应变灵敏度系数为0.05514nm/kg,温度灵敏度系数为0.02357nm/℃,是裸光纤光栅传感器温度灵敏度系数的2.4倍。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高琳琳
王庆林
郭云力
叶慧
姜明顺
贾玉玺
关键词 复合材料光纤Bragg光栅真空辅助灌注预固化二次固化    
Abstract:Based on the sensing principle of optical fiber grating, a kind of fiber Bragg grating (FBG) sensor packaged in glass fiber/epoxy composite substrate was designed and fabricated. The glass fiber/epoxy composite laminate was used as the bottom substrate, and the glass fiber fabric was used as the covering layer. Then the FBG was encapsulated between the bottom substrate and the covering layer by means of a vacuum-assisted infusion process of liquid epoxy. The only once but fully curing and the pre-curing processes were separately adopted in the process of preparing the glass fiber/epoxy composite substrate. Through the comparison of the two kinds of experimental results, it can be concluded that when the only once but fully curing process is adopted to prepare the glass fiber/epoxy composite substrate, the linearity and repeatability of the temperature response of the packaged FBG sensor are poor, and its relative repeatability error is as high as 10.90%, while the linearity is only 0.99871; when the pre-curing process is adopted before packaging and the secondary curing process is adopted after packaging, the relative repeatability error of the temperature response of the packaged FBG sensor is only 1.87%, and the linearity is 0.99998; besides, its strain sensitivity coefficient is 0.05514nm/kg, and its temperature sensitivity coefficient is 0.02357nm/℃, which is 2.4 times of the temperature sensitivity coefficient of bare FBG sensor.
Key wordscomposites    fiber Bragg grating    vacuum-assisted infusion    pre-curing    secondary curing
收稿日期: 2017-03-18      出版日期: 2018-09-19
中图分类号:  TB332  
通讯作者: 贾玉玺(1970-),男,教授,博士,主要从事复合材料多尺度建模与表征等方面的研究,联系地址:山东省济南市历下区经十路17923号山东大学材料科学与工程学院(250061),E-mail:jia_yuxi@sdu.edu.cn     E-mail: jia_yuxi@sdu.edu.cn
引用本文:   
高琳琳, 王庆林, 郭云力, 叶慧, 姜明顺, 贾玉玺. 复合材料基片式光纤光栅传感器的制造与性能[J]. 材料工程, 2018, 46(9): 65-72.
GAO Lin-lin, WANG Qing-lin, GUO Yun-li, YE Hui, JIANG Ming-shun, JIA Yu-xi. Fabrication and Performance of Optical Fiber Grating Sensors Packaged in Composite Substrate. Journal of Materials Engineering, 2018, 46(9): 65-72.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000311      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/65
[1] OLIVEIRA R D, RAMOS C A, MARQUESA T. Health monitoring of composite structures by embedded FBG and interferometric Fabry-Pérot sensors[J]. Computers & Structures, 2008, 86(3/5):340-346.
[2] KUANG K S C, KENNY R, WHELAN M P, et al. Embedded fibre Bragg grating sensors in advanced composite materials[J]. Composites Science & Technology, 2001, 61(10):1379-1387.
[3] ZHOU Z D, JIANG D S, ZHANG D S. Digital monitoring for heavy duty mechanical equipment based on fiber Bragg grating sensor[J]. Science China Technological Sciences, 2009, 52(2):285-293.
[4] LU S, JIANG M, SUI Q, et al. Damage identification system of CFRP using fiber Bragg grating sensors[J]. Composite Structures, 2015, 125:400-406.
[5] 周玉敬,刘刚, 李雪芹, 等. 热残余应力对内埋光纤光栅传感器性能的影响[J]. 复合材料学报, 2013, 30(1):54-61. ZHOU Y J, LIU G, LI X Q, et al. Effect of thermal residual stress on fiber Bragg grating sensors embedded in T-stiffened panels[J]. Acta Materiae Compositae Sinica, 2013, 30(1):54-61.
[6] PAPANTONIOU A, RIGAS G, ALEXOPOULOS N D. Assessment of the strain monitoring reliability of fiber Bragg grating sensor (FBGs) in advanced composite structures[J]. Composite Structures, 2011, 93(9):2163-2172.
[7] MULLE M, MOUSSAWI A, LUBINEAU G, et al. Response of fiber Bragg gratings bonded on a glass/epoxy laminate subjected to static loadings[J]. Composite Structures, 2015, 130:75-84.
[8] RODRIGO A, MUNOZ S, ROBERTO A, et al. Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors[J]. Composite Structures, 2009, 89(2):224-234.
[9] MULLE M, WAFAI H, YUDHANTO A, et al. Process monitoring of glass reinforced polypropylene laminates using fiber Bragg gratings[J]. Composites Science & Technology, 2016, 123:143-150.
[10] 刘春桐,李洪才, 张志利, 等. 铝合金箔片封装光纤光栅传感特性研究[J]. 光电子激光, 2008, 19(7):905-908. LIU C T, LI H C, ZHANG Z L, et al. Study on the sensing characteristics of fiber Bragg grating packaged by aluminum alloy slice[J]. Journal of Optoelectronics Laser, 2008, 19(7):905-908.
[11] 周智, 赵雪峰, 武湛君, 等. 光纤光栅毛细钢管封装工艺及其传感特性研究[J]. 中国激光, 2002, 29(12):1080-1092. ZHOU Z, ZHAO X F, WU Z J, et al. Study on FBG sensor's steel capillary encapsulating technique and sensing properties[J]. Chinese Journal of Lasers,2002, 29(12):1080-1092.
[12] WEN Q, ZHU J, GONG S, et al. Design and synthesis of a packaging polymer enhancing the sensitivity of fiber grating pressure sensor[J]. Progress in Natural Science, 2008, 18(2):197-200.
[13] 贾玉玺, 董琪, 安立佳, 等. 一种塑料厚板制品检测用光纤光栅传感器嵌件及其制造方法:201510969861.5[P].2016-03-02. JIA Y X, DONG Q, AN L J, et al.An optical fiber grating sensor insert monitoring thick plastic plate and its manufacturing method:201510969861.5[P]. 2016-03-02.
[14] 吴入军, 郑百林, 贺鹏飞, 等. 埋入式光纤布拉格光栅传感器封装结构对测量应变的影响[J]. 光学精密工程, 2014, 22(1):24-30. WU R J, ZHENG B L, HE P F, et al. Influence of encapsulation structures for embedded fiber-optic Bragg grating sensor on strain measurement[J]. Optics and Precision Engineering, 2014, 22(1):24-30.
[15] DAWOOD T A, SHENOI R A, SAHIN M. A procedure to embed fibre Bragg grating strain sensors into GFRP sandwich structures[J]. Composites Part A, 2007, 38(1):217-226.
[16] 高琳琳, 王庆林, 王晓霞, 等. 纤维复合材料层合板内埋光纤光栅传感器的保护技术[J]. 复合材料学报, 2016, 33(11):2485-2491. GAO L L, WANG Q L, WANG X X, et al. Protection technology of optical fiber grating sensors embedded in fiber composite laminates[J]. Acta Materiae Compositae Sinica, 2016, 33(11):2485-2491.
[17] 董抒华, 李伟东, 丁妍羽, 等. 基于"离位"增韧技术Z向注射RTM成型的浸润研究[J]. 材料工程, 2017, 45(9):52-58. DONG S H, LI W D, DING Y Y, et al. Infiltration of Z-direction injection RTM process based on ex-situ toughening technology[J]. Journal of Materials Engineering, 2017, 45(9):52-58.
[18] 于秀娟, 余有龙, 张敏, 等. 铜片封装光纤光栅传感器的应变和温度传感特性研究[J]. 光子学报, 2006, 35(9):1325-1328. YU X J, YU Y L, ZHANG M, et al. Study on the strain and temperature densing characteristics of FBG packaged by the copper slice[J]. Acta Photonica Sinica, 2006, 35(9):1325-1328.
[19] HAO J Z, TAKAHASHI S, CAI Z H, et al. Packaging effects on fiber Bragg grating sensor performance[J]. Acta Automatica Sinica, 2006, 32(6):999-1007.
[20] 刘云启, 郭转运, 刘志国, 等. 聚合物封装的高灵敏度光纤光栅压力传感器[J]. 中国激光, 2000, 27(3):211-214. LIU Y Q, GUO Z Y, LIU Z G, et al. High-sensitivity fiber grating pressure sensor with polymer jacket[J]. Chinese Journal of Lasers, 2000, 27(3):211-214.
[21] 贾玉玺, 郭云力, 高琳琳, 等. 一种复合材料封装的光纤光栅传感器及其制造方法:201610880225.X[P].2016-10-10. JIA Y X, GUO Y L, GAO L L, et al. An optical fiber grating sensor packaged in composites and its manufacturing method:201610880225.X[P]. 2016-10-10.
[22] 陈显, 余尚江, 林明, 等. 一种复合材料封装光纤光栅片式应变传感器研究[J]. 传感器与微系统, 2008, 27(12):43-44. CHEN X, YU S J, LIN M, et al. Research on optic fiber Bragg grating strain sensors with composite slip capsulation[J]. Transducer and Microsystem Technologies, 2008, 27(12):43-44.
[23] 谢怀勤, 卢少微, 王武娟. 固化于CFRP的光纤布拉格光栅应变传感特性研究[J]. 哈尔滨工业大学学报, 2006, 38(10):1813-1815. XIE H Q, LU S W, WANG W J. Experimental study on the sensing properties of fiber Bragg grating cured in CFRP[J]. Journal of Harbin Institute of Technology, 2006, 38(10):1813-1815.
[24] 田高洁, 李川, 由静, 等. 碳纤维复合材料封装光纤Bragg光栅[J]. 大坝与安全, 2010(1):28-30. TIAN G J, LI C, YOU J, et al. Fiber Bragg grating packaged by carbon fiber-reinforced plastic[J]. Dam and Safety, 2010(1):28-30.
[25] 孙丽. 光纤光栅传感器应用问题解析[M]. 北京:科学出版社, 2012:8-32. SUN L. Application analysis of fiber Bragg grating sensor[M]. Beijing:Science Press, 2012:8-32.
[26] 梁磊, 刘德力, 李鹏. 碳纤维复合材料封装光纤传感器研究[J]. 武汉理工大学学报, 2008, 30(5):55-57. LIANG L, LIU D L, LI P, et al. Research on CFRP encapsulating fiber Bragg grating sensor[J]. Journal of Wuhan University of Technology, 2008, 30(5):55-57.
[27] 王文娟, 宋昊, 薛景锋. 一种表贴于复合材料结构的光纤光栅传感器保护方法:201610346552.7[P]. 2016-05-24. WANG W J, SONG H, XUE J F. A method of protecting fiber Bragg grating sensors affixed to composite structures:201610346552.7[P]. 2016-05-24.
[1] 许文龙, 陈爽, 张津红, 刘会娥, 朱佳梦, 刁帅, 于安然. 羧甲基纤维素-石墨烯复合气凝胶的制备及吸附研究[J]. 材料工程, 2020, 48(9): 77-85.
[2] 曹弘毅, 姜明顺, 马蒙源, 张法业, 张雷, 隋青美, 贾磊. 复合材料层压板分层缺陷相控阵超声检测参数优化方法[J]. 材料工程, 2020, 48(9): 158-165.
[3] 栾建泽, 那景新, 谭伟, 慕文龙, 申浩, 秦国锋. 铝合金-BFRP粘接接头的服役高温老化力学性能及失效预测[J]. 材料工程, 2020, 48(9): 166-172.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[6] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[7] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[8] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[9] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[10] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[11] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[12] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[13] 易振华, 冉丽萍, 易茂中. Ni-Cr-P焊膏钎焊C/C复合材料的组织和性能[J]. 材料工程, 2020, 48(5): 127-135.
[14] 张从阳, 李志锐, 方东, 叶永盛, 叶喜葱, 吴海华. SiCp/AZ91D镁基纳米复合材料的室温拉伸行为及塑性变形机理[J]. 材料工程, 2020, 48(4): 108-115.
[15] 张芳芳, 段永川, 高安娜, 姚丹. 基于耦合法的二维三轴编织复合材料热学性能预测及验证[J]. 材料工程, 2020, 48(4): 151-157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn