Abstract:Whisker multiwalled carbon nanotubes (WMWCNTs) and multiwalled carbon nanotubes (MWCNTs) were synthesized via chemical vapor deposition (CVD), and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectroscopy. Paper fibers were used as matrix material, WMWCNTs and MWCNTs as functional material. Paper fibers were mixed with dispersed WMWCNTs and MWCNTs by speed-cutting procedure in water. Then the composite papers were fabricated by vacuum filtration method. The electrochemical performance of the supercapacitor was tested by cyclic voltammetry, galvanostatic charge/discharge. The testing results indicate the supercapacitor has a maximum capacitance of 120F/g at a scan rate of 1mV/s and has a specific capacitance of 51.5F/g at 0.4A/g. The maximum energy density and power density reach 63.7Wh/kg and 3.99kW/kg respectively in the current range of 0.4-1.4A/g.
[1] THOUNTHONG P, RAËL S, DAVAT B. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications[J]. Journal of Power Sources, 2009, 193(1):376-385.
[2] 陈英放, 李媛媛, 邓梅根. 超级电容器的原理及应用[J]. 电子元件与材料, 2008, 27(4):6-9. CHEN Y F, LI Y Y, DENG M G. Principles and applications of supercapacitors[J]. Electronic Components & Materials, 2008, 27(4):6-9.
[3] ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[4] CASAS C D L, LI W. A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources, 2012, 208(2):74-85.
[5] 刘珍红, 孙晓刚, 陈珑,等. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1):99-105. LIU Z H, SUN X G, CHEN L, et al. Performance of lithium ion batteries with carbon nanotube paper/nano silicon composite electrode[J]. Journal of Materials Engineering, 2018, 46(1):99-105.
[6] HUANG J, RODRIGUE D. The effect of carbon nanotube orientation and content on the mechanical properties of polypropylene based composites[J].Materials & Design,2014,55(6):653-663.
[7] SIVARAMAN P, BHATTACHARRYA A R. Asymmetric supercapacitor containing poly(3-methyl thiophene)-multiwalled carbon nanotubes nanocomposites and activated carbon[J]. Electrochimica Acta, 2013, 94:182-191.
[8] KANG Y J, CHUN S J, LEE S S, et al. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels[J]. ACS Nano, 2012, 6(7):6400-6406.
[9] CHEN T, DAI L. Flexible supercapacitors based on carbon nanomaterials[J]. Journal of Materials Chemistry A, 2014, 2(28):10756-10775.
[10] CHENG Y, LU S, ZHANG H, et al. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors[J]. Nano Letters, 2012, 12(8):4206.
[11] YU D, DAI L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors[J]. Journal of Physical Chemistry Letters, 2015, 1(2):467-470.
[12] 邓凌峰, 彭辉艳, 覃昱焜, 等. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4):121-127. DENG L F, PENG H Y, QIN Y K, et al. Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance[J]. Journal of Materials Engineering, 2017, 45(4):121-127.
[13] HUANG Z D, ZHANG B, LIANG R, et al. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers[J]. Carbon, 2012, 50(11):4239-4251.
[14] HUANG Y Y, TERENTJEV E M. Dispersion of carbon nanotubes:mixing, sonication, stabilization, and composite properties[J]. Polymers, 2012, 4(1):275-295.
[15] 庞志鹏, 孙晓刚, 程晓圆,等. 碳纳米管导电纸的制备及改性研究[J]. 功能材料, 2015, 46(7):7109-7112. PANG Z P, SUN X G, CHENG X Y, et al. Study on preparation and modification of CNT conductive paper[J]. Journal of Functional Materials, 2015, 46(7):7109-7112.
[16] 庞志鹏, 孙晓刚, 程晓圆,等. 碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响[J]. 材料研究学报, 2015, 29(8):583-588. PANG Z P, SUN X G, CHENG X Y, et al. Effect of carbon nanotube content on electromagnetic interference shielding performance of carbon nanotube cellulose composite materials[J]. Chinese Journal of Materials Research, 2015, 29(8):583-588.
[17] 吴小勇, 孙晓刚, 聂艳艳,等. 复合碳纳米管纸制备及作为锂离子电池负极的研究[J]. 人工晶体学报, 2015, 44(10):2771-2777. WU X Y,SUN X G,NIE Y Y, et al. Preparation and application as anodes in lithium-ion battery of composite carbon nanotube paper[J]. Journal of Synthetic Crystals, 2015, 44(10):2771-2777.
[18] 郝红英, 王茜, 邵自强,等. 纤维素纳米纤维基层层自组装透明柔性导电膜及其电致变色柔性超级电容器[J]. 高等学校化学学报, 2015, 36(9):1838-1845. HAO H Y, WANG X, SHAO Z Q, et al. Transparent flexible conductive thin films based on cellulose nanofibers by layer-by-layer assembly method and its fabricated electrochromic flexible supercapacitors[J]. Chemical Journal of Chinese Universities, 2015, 36(9):1838-1845.
[19] CHEN T, DAI L. Flexible supercapacitors based on carbon nanomaterials[J]. Journal of Materials Chemistry A, 2014, 2(28):10756-10775.
[20] 郑譞, 龚春丽, 刘海,等. 磷钼酸负载碳纳米管复合物的制备及其超级电容性能[J]. 无机材料学报, 2017, 32(2):127-134. ZHENG X, GONG C L, LIU H, et al. Preparation of phosphomolybdic acid coated carbon nanotubes and its supercapacitive properties[J]. Journal of Inorganic Materials, 2017, 32(2):127-134.
[21] SCHOPF D, ES-SOUNI M. Supported porous carbon and carbon-CNT nanocomposites for supercapacitor applications[J]. Applied Physics A, 2016, 122(3):1-7.
[22] 孙晓刚, 赵东林, 李颖毅,等. 全自动连续生产晶须状碳纳米管的合成装置:CN 103011123 A[P]. 2014-04-09. SUN X G, ZHAO D L, LI Y Y, et al. Synthesizing device for fully automatic continuous production of whisker-like carbon nanotubes:CN 103011123 A[P]. 2014-04-09.
[23] AZAM M A, JANTAN N H, DORAH N, et al. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1M LiPF6, electrolyte[J]. Materials Research Bulletin, 2015, 69:20-23.
[24] ARAVINDA L S, NAGARAJA K K, NAGARAJA H S, et al. ZnO/carbon nanotube nanocomposite for high energy density supercapacitors[J]. Electrochimica Acta, 2013, 95(11):119-124.