Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 113-119    DOI: 10.11868/j.issn.1001-4381.2017.000482
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳纳米管/纤维素复合纸为电极的超级电容器性能
陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑
南昌大学 机电工程学院, 南昌 330031
Carbon Nanotubes/Cellulose Composite Paper as Electrodes for Supercapacitor
CHEN Wei, SUN Xiao-gang, CAI Man-yuan, NIE Yan-yan, QIU Zhi-wen, CHEN Long
College of Mechatronics Engineering, Nanchang University, Nanchang 330031, China
全文: PDF(4554 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用化学气相沉积法合成晶须状碳纳米管(WMWCNTs)和碳纳米管(MWCNTs)。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)对其进行详细分析。以纸纤维为基体材料,晶须状碳纳米管和碳纳米管为功能材料,通过真空抽滤制得碳(WMWCNTs)/碳(MWCNTs)/纤维素复合纸。采用两电极测试体系,通过循环伏安及恒流充放电方法对其超级电容器性能进行测试。在扫描速率为1mV/s时,碳/碳/纤维素复合纸电极的比容量达到120F/g。在电流密度为0.4A/g时,碳/碳/纤维素复合纸电极比容量值可达51.5F/g。在电流密度为0.4~1.4A/g范围时,最大比能量和比功率分别为63.7Wh/kg和3.99kW/kg,表现出良好的超级电容器性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈玮
孙晓刚
蔡满园
聂艳艳
邱治文
陈珑
关键词 晶须状碳纳米管碳纳米管超级电容器纸纤维    
Abstract:Whisker multiwalled carbon nanotubes (WMWCNTs) and multiwalled carbon nanotubes (MWCNTs) were synthesized via chemical vapor deposition (CVD), and were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD) and Raman spectroscopy. Paper fibers were used as matrix material, WMWCNTs and MWCNTs as functional material. Paper fibers were mixed with dispersed WMWCNTs and MWCNTs by speed-cutting procedure in water. Then the composite papers were fabricated by vacuum filtration method. The electrochemical performance of the supercapacitor was tested by cyclic voltammetry, galvanostatic charge/discharge. The testing results indicate the supercapacitor has a maximum capacitance of 120F/g at a scan rate of 1mV/s and has a specific capacitance of 51.5F/g at 0.4A/g. The maximum energy density and power density reach 63.7Wh/kg and 3.99kW/kg respectively in the current range of 0.4-1.4A/g.
Key wordswhisker carbon nanotubes    carbon nanotubes    supercapacitor    paper fiber
收稿日期: 2017-04-20      出版日期: 2018-10-17
中图分类号:  O646  
通讯作者: 孙晓刚(1957-),男,教授,研究方向为碳纳米管及锂离子电池,联系地址:江西省南昌市红谷滩新区南昌大学前湖校区机电工程学院(330031),E-mail:xiaogangsun@163.com     E-mail: xiaogangsun@163.com
引用本文:   
陈玮, 孙晓刚, 蔡满园, 聂艳艳, 邱治文, 陈珑. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10): 113-119.
CHEN Wei, SUN Xiao-gang, CAI Man-yuan, NIE Yan-yan, QIU Zhi-wen, CHEN Long. Carbon Nanotubes/Cellulose Composite Paper as Electrodes for Supercapacitor. Journal of Materials Engineering, 2018, 46(10): 113-119.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.000482      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/113
[1] THOUNTHONG P, RAËL S, DAVAT B. Energy management of fuel cell/battery/supercapacitor hybrid power source for vehicle applications[J]. Journal of Power Sources, 2009, 193(1):376-385.
[2] 陈英放, 李媛媛, 邓梅根. 超级电容器的原理及应用[J]. 电子元件与材料, 2008, 27(4):6-9. CHEN Y F, LI Y Y, DENG M G. Principles and applications of supercapacitors[J]. Electronic Components & Materials, 2008, 27(4):6-9.
[3] ⅡJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56-58.
[4] CASAS C D L, LI W. A review of application of carbon nanotubes for lithium ion battery anode material[J]. Journal of Power Sources, 2012, 208(2):74-85.
[5] 刘珍红, 孙晓刚, 陈珑,等. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1):99-105. LIU Z H, SUN X G, CHEN L, et al. Performance of lithium ion batteries with carbon nanotube paper/nano silicon composite electrode[J]. Journal of Materials Engineering, 2018, 46(1):99-105.
[6] HUANG J, RODRIGUE D. The effect of carbon nanotube orientation and content on the mechanical properties of polypropylene based composites[J].Materials & Design,2014,55(6):653-663.
[7] SIVARAMAN P, BHATTACHARRYA A R. Asymmetric supercapacitor containing poly(3-methyl thiophene)-multiwalled carbon nanotubes nanocomposites and activated carbon[J]. Electrochimica Acta, 2013, 94:182-191.
[8] KANG Y J, CHUN S J, LEE S S, et al. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels[J]. ACS Nano, 2012, 6(7):6400-6406.
[9] CHEN T, DAI L. Flexible supercapacitors based on carbon nanomaterials[J]. Journal of Materials Chemistry A, 2014, 2(28):10756-10775.
[10] CHENG Y, LU S, ZHANG H, et al. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors[J]. Nano Letters, 2012, 12(8):4206.
[11] YU D, DAI L. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors[J]. Journal of Physical Chemistry Letters, 2015, 1(2):467-470.
[12] 邓凌峰, 彭辉艳, 覃昱焜, 等. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4):121-127. DENG L F, PENG H Y, QIN Y K, et al. Combination carbon nanotubes with graphene modified natural graphite and its electrochemical performance[J]. Journal of Materials Engineering, 2017, 45(4):121-127.
[13] HUANG Z D, ZHANG B, LIANG R, et al. Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers[J]. Carbon, 2012, 50(11):4239-4251.
[14] HUANG Y Y, TERENTJEV E M. Dispersion of carbon nanotubes:mixing, sonication, stabilization, and composite properties[J]. Polymers, 2012, 4(1):275-295.
[15] 庞志鹏, 孙晓刚, 程晓圆,等. 碳纳米管导电纸的制备及改性研究[J]. 功能材料, 2015, 46(7):7109-7112. PANG Z P, SUN X G, CHENG X Y, et al. Study on preparation and modification of CNT conductive paper[J]. Journal of Functional Materials, 2015, 46(7):7109-7112.
[16] 庞志鹏, 孙晓刚, 程晓圆,等. 碳纳米管含量对碳纳米管-纤维素复合材料电磁屏蔽性能的影响[J]. 材料研究学报, 2015, 29(8):583-588. PANG Z P, SUN X G, CHENG X Y, et al. Effect of carbon nanotube content on electromagnetic interference shielding performance of carbon nanotube cellulose composite materials[J]. Chinese Journal of Materials Research, 2015, 29(8):583-588.
[17] 吴小勇, 孙晓刚, 聂艳艳,等. 复合碳纳米管纸制备及作为锂离子电池负极的研究[J]. 人工晶体学报, 2015, 44(10):2771-2777. WU X Y,SUN X G,NIE Y Y, et al. Preparation and application as anodes in lithium-ion battery of composite carbon nanotube paper[J]. Journal of Synthetic Crystals, 2015, 44(10):2771-2777.
[18] 郝红英, 王茜, 邵自强,等. 纤维素纳米纤维基层层自组装透明柔性导电膜及其电致变色柔性超级电容器[J]. 高等学校化学学报, 2015, 36(9):1838-1845. HAO H Y, WANG X, SHAO Z Q, et al. Transparent flexible conductive thin films based on cellulose nanofibers by layer-by-layer assembly method and its fabricated electrochromic flexible supercapacitors[J]. Chemical Journal of Chinese Universities, 2015, 36(9):1838-1845.
[19] CHEN T, DAI L. Flexible supercapacitors based on carbon nanomaterials[J]. Journal of Materials Chemistry A, 2014, 2(28):10756-10775.
[20] 郑譞, 龚春丽, 刘海,等. 磷钼酸负载碳纳米管复合物的制备及其超级电容性能[J]. 无机材料学报, 2017, 32(2):127-134. ZHENG X, GONG C L, LIU H, et al. Preparation of phosphomolybdic acid coated carbon nanotubes and its supercapacitive properties[J]. Journal of Inorganic Materials, 2017, 32(2):127-134.
[21] SCHOPF D, ES-SOUNI M. Supported porous carbon and carbon-CNT nanocomposites for supercapacitor applications[J]. Applied Physics A, 2016, 122(3):1-7.
[22] 孙晓刚, 赵东林, 李颖毅,等. 全自动连续生产晶须状碳纳米管的合成装置:CN 103011123 A[P]. 2014-04-09. SUN X G, ZHAO D L, LI Y Y, et al. Synthesizing device for fully automatic continuous production of whisker-like carbon nanotubes:CN 103011123 A[P]. 2014-04-09.
[23] AZAM M A, JANTAN N H, DORAH N, et al. Activated carbon and single-walled carbon nanotube based electrochemical capacitor in 1M LiPF6, electrolyte[J]. Materials Research Bulletin, 2015, 69:20-23.
[24] ARAVINDA L S, NAGARAJA K K, NAGARAJA H S, et al. ZnO/carbon nanotube nanocomposite for high energy density supercapacitors[J]. Electrochimica Acta, 2013, 95(11):119-124.
[1] 阚侃, 王珏, 付东, 宋美慧, 张伟君, 张晓臣. 氮/氧共掺杂多孔碳纳米带的可控制备及储能特性[J]. 材料工程, 2020, 48(8): 101-109.
[2] 王振威, 杨晓闪, 郑亚云, 张迎九, 徐洁. CuO/CuxSy八面体核壳结构的合成及其电化学性能[J]. 材料工程, 2020, 48(6): 98-105.
[3] 张淑娴, 邓凌峰, 连晓辉, 谭洁慧, 李金磊. 微量CNTs包覆对LiNi0.8Co0.1Mn0.1O2正极材料电化学性能的影响[J]. 材料工程, 2020, 48(5): 68-74.
[4] 李旭, 孙晓刚, 王杰, 陈玮, 黄雅盼, 梁国东, 魏成成, 胡浩. 无黏结剂柔性Si/CNT/纤维素复合阳极及其电化学性能[J]. 材料工程, 2020, 48(4): 139-144.
[5] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[6] 殷小春, 尹有华, 成迪, 杨智韬. 正应力支配下混合顺序对PA6/HDPE/CNTs体系结构及性能的影响[J]. 材料工程, 2020, 48(2): 87-93.
[7] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[8] 杨斌, 李云龙, 王世杰, 聂瑞, 王照智. 拉应力下碳纳米管增强高分子基复合材料的应力分布[J]. 材料工程, 2020, 48(2): 79-86.
[9] 陈玮, 孙晓刚, 胡浩, 王杰, 李旭, 梁国东, 黄雅盼, 魏成成. AC+Li(NiCoMn)O2/Li4Ti5O12+MWCNTs混合型电容器[J]. 材料工程, 2020, 48(1): 128-135.
[10] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[11] 李闽, 刘敏, 刘康. 界面法制备三维网状PPy-PEDOT共聚物膜及电容性能[J]. 材料工程, 2019, 47(9): 123-131.
[12] 李旭, 孙晓刚, 蔡满园, 王杰, 陈玮, 陈珑, 邱治文. 氟化多壁碳纳米管作正极对锂/氟电池性能的影响[J]. 材料工程, 2019, 47(8): 22-27.
[13] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[14] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[15] 蔡满园, 孙晓刚, 陈玮, 邱治文, 陈珑, 刘珍红, 聂艳艳. 以预锂化多壁碳纳米管为负极的锂离子电容器性能[J]. 材料工程, 2019, 47(5): 145-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn