Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (7): 57-63    DOI: 10.11868/j.issn.1001-4381.2017.001102
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热分解法制备Cu空心微球及其光热转换性能
徐斌1, 陈程华1, 张彩霞1, 鲁聪达2, 倪忠进3
1 浙江工业大学 材料科学与工程学院, 杭州 310014;
2 浙江工业大学 机械工程学院, 杭州 310014;
3 浙江农林大学 工程学院, 浙江 临安 311300
Cu hollow microspheres synthesized by thermal decomposition and its photo-thermal conversion performance
XU Bin1, CHEN Cheng-hua1, ZHANG Cai-xia1, LU Cong-da2, NI Zhong-jin3
1. College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
2. College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou 310014, China;
3. College of Engineering, Zhejiang A & F University, Lin'an 311300, Zhejiang, China
全文: PDF(6070 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 以甲酸铜-辛胺配合物为前驱体,油胺为表面活性剂,在熔化液态石蜡中通过热分解法单步制备Cu空心微球。利用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射仪(XRD)、导热系数仪、紫外-可见-近红外分光光度计(UV-Vis-NIR)及光热转换测试装置表征Cu球,研究其光热转换性能,分析Cu空心微球的合成机理。结果表明:反应温度为110℃、反应时间为3h、油胺物质的量为0.005mol的条件下,能够获得Cu空心微球,其平均粒径为380nm,壁厚约为70nm。Cu空心微球的形成机理:油胺吸附的Cu纳米晶在界面能最小化的驱动下,沿着前驱体热分解反应,生成的气泡和液态石蜡所形成的气-液界面聚合生长而成。Cu空心微球悬浮液的热导率、光热转换性能均优于实心Cu悬浮液的。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐斌
陈程华
张彩霞
鲁聪达
倪忠进
关键词 Cu空心微球热分解法热导率光热转换性能    
Abstract:Cu hollow microspheres were synthesized by thermal decomposition of Cu(Ⅱ) formate-octylamine complexes in molten paraffin using oleyl amine (OA) as the surfactant. The synthesized products were investigated by means of scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermal constant analyzer, UV-Vis-NIR and photo-thermal conversion test device. The relevant synthesis mechanism of Cu hollow microspheres was analyzed. The results show that Cu hollow microspheres can be obtained under the conditions of reaction temperature at 110℃, reaction time at 3h and amount of OA at 0.005mol, the average diameter and wall thickness of Cu hollow microspheres are about 380nm and 70nm, respectively. The formation mechanism of Cu hollow microspheres is that the primary Cu nanocrystals driven by minimizing the interface energy may aggregate around the gas-liquid interface between liquid paraffin and bubbles. The thermal conductivity and photo-thermal conversion performance of Cu hollow microspheres suspension are better than those of solid Cu.
Key wordsCu hollow microsphere    thermal decomposition    thermal conductivity    photo-thermal conv-ersion performance
收稿日期: 2017-08-31      出版日期: 2019-07-19
中图分类号:  TB31  
通讯作者: 鲁聪达(1964-),男,教授,研究方向:纳米复合材料,联系地址:浙江省杭州市西湖区留和路288号浙江工业大学屏风校区机械工程学院(310014),lcd@zjut.edu.cn     E-mail: lcd@zjut.edu.cn
引用本文:   
徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
XU Bin, CHEN Cheng-hua, ZHANG Cai-xia, LU Cong-da, NI Zhong-jin. Cu hollow microspheres synthesized by thermal decomposition and its photo-thermal conversion performance. Journal of Materials Engineering, 2019, 47(7): 57-63.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001102      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/57
[1] LIU Q,GUO X,LI Y,et al. Synthesis of hollow Co structures with netlike framework[J]. Langmuir the ACS Journal of Surfaces & Colloids,2009, 25(11):6425-30.
[2] HOU H,JING M,YANG Y,et al. Sb porous hollow microsph-eres as advanced anode materials for sodium-ion batteries[J]. Journal of Materials Chemistry A,2015,3(6):2971-2977.
[3] ZHANG X,WANG K,WANG Y,et al. Galvanic synthesis of uniform Au hollow microspheres using Pb colloidal templates and their surface-enhanced raman scattering properties[J]. Science of Advanced Materials,2015,7(7):1310-1318.
[4] DAO V D,KIM S H,CHOI H S,et al. Efficiency enhancement of dye-sensitized solar cell using Pt hollow sphere counter electrode[J]. Journal of Physical Chemistry C,2011,115(51):25529-25534.
[5] WANG A X,CHU D Q,WANG L M,et al. Template-free hydro-thermal synthesis of copper hollow microspheres:microstructure, formation mechanism and compression plasticity[J]. RSC Adva-nces,2014,4(15):7545-7548.
[6] WU S,ZHU D,ZHANG X,et al. Preparation and melting/freezing characteristics of Cu/paraffin nanofluid as phase-change material (PCM)[J]. Energy & Fuels,2010,24(3):1894-1898.
[7] LIU M S,LIN C C,TSAI C Y,et al. Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction me-thod[J]. International Journal of Heat & Mass Transfer,2006,49(17):3028-3033.
[8] WANG H,HE S,YU S,et al. Template-free synthesis of Cu2O hollow nanospheres and their conversion into Cu hollow nanospheres[J]. Powder Technology,2009,193(2):182-186.
[9] XU L Y,KUANG D,HU W B,et al. Fabrication of Cu hollow microspheres by liquid reduction method[J]. Journal of Nano-materials & Molecular Nanotechnology,2014,3(2):2324-8777.
[10] XU B,WANG B,ZHANG C,et al. Synthesis and light-heat conversion performance of hybrid particles decorated MWCNTs/paraffin phase change materials[J]. Thermochimica Acta,2017,652:77-84.
[11] PENG Q,DONG Y,LI Y. ZnSe semiconductor hollow micro-spheres[J]. Angewandte Chemie,2003, 42(26):3027-3030.
[12] CHEN X,WANG Z,WANG X,et al. Synthesis of novel copper sulfide hollow spheres generated from copper (Ⅱ)-thiourea complex[J]. Journal of Crystal Growth,2004,263(1/4):570-574.
[13] SHAO W,WANG Z,ZHANG Y,et al. Controlled synthesis of SnO2 hollow microspheres via a facile template-free hydroth-ermal route[J]. Chemistry Letters,2005,34(4):556-557.
[14] CHEN Y,ZHANG Y,FU S. Synthesis and characterization of Co3O4, hollow spheres[J]. Materials Letters,2007,61(3):701-705.
[15] GU F,LI C Z,WANG S F,et al. Solution-phase synthesis of spherical zinc sulfide nanostructures[J]. Langmuir the ACS Journal of Surfaces & Colloids,2006,22(3):1329-1332.
[16] 方晓鹏. 纳米流体热质传递机理及光学特性研究[D]. 南京:南京理工大学,2013. FANG X P. Research on heat and mass transfer mechanisms and optical character of nanofluids[D]. Nanjing:Nanjing University of Science and Technology,2013.
[17] ZAMZAMIAN A H,JAMAL-ABADI M T. Thermal conduc-tivity of Cu and Al-water nanofluids[J]. International Journal of Engineering,2013,26(8):821-828.
[18] SADRI R,AHMADI G,TOGUN H,et al. An experimental study on thermal conductivity and viscosity of nanofluids contai-ning carbon nanotubes[J]. Nanoscale Research Letters,2014,9(1):151.
[19] AMROLLAHI A,HAMIDI A A,RASHIDI A M. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)[J]. Nanotechnology,2008,19(31):315701.
[20] JANG S P,CHOI S U S. Role of brownian motion in the enhan-ced thermal conductivity of nanofluids[J]. Applied Physics Lett-ers,2004,84(21):4316-4318.
[21] 段慧玲,宣益民. 等离激元纳米流体的光热特性研究[J]. 中国科学:技术科学,2014(8):833-838. DUAN H L,XUAN Y M. Research on photo-thermal properties of plasmonic nanofluid[J]. Scientia Sinica (Technologica),2014(8):833-838.
[22] OUBRE C,NORDLANDER P. Optical properties of metallodiel-ectric nanostructures calculated using the finite difference time domain method[J]. Journal of Physical Chemistry B,2004,108(46):17740-17747.
[23] CHEN L,XU C,LIU J,et al. Optical absorption property and photo-thermal conversion performance of graphene oxide/water nanofluids with excellent dispersion stability[J]. Solar Energy,2017,148:17-24.
[1] 于长清, 陈利, 裴雨辰. 碳纤维表面涂层对碳纤维增强锂铝硅玻璃陶瓷复合材料热导率的影响[J]. 材料工程, 2018, 46(6): 101-105.
[2] 何鹏, 耿慧远. 先进热管理材料研究进展[J]. 材料工程, 2018, 46(4): 1-11.
[3] 赵海涛, 马瑞廷, 刘瑞萍. 热分解法制备Ni0.5Zn0.5Fe2O4纳米颗粒[J]. 材料工程, 2017, 45(9): 81-85.
[4] 袁佟, 邓畅光, 毛杰, 邓春明, 邓子谦. 等离子喷涂-物理气相沉积制备7YSZ热障涂层及其热导率研究[J]. 材料工程, 2017, 45(7): 1-6.
[5] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面改性对SiCp/Cu复合材料热物理性能的影响[J]. 材料工程, 2016, 44(8): 11-16.
[6] 吴贺君, 卢灿辉, 李庆业, 胡彪. 固相剪切碾磨制备铝粉填充聚乙烯基高性能导热复合材料的研究[J]. 材料工程, 2016, 44(4): 39-44.
[7] 刘菁伟, 杨文彬, 谢长琼, 张凯, 范敬辉. HDPE/EG/石蜡导热定形相变材料的制备及性能[J]. 材料工程, 2015, 43(4): 42-46.
[8] 刘猛, 白书欣, 李顺, 赵恂, 熊德赣. 界面设计对Sip/Al复合材料组织和性能的影响[J]. 材料工程, 2014, 0(8): 61-66.
[9] 段远源, 于海童, 王晓东, 赵俊杰. 含水量及相关散射对气凝胶辐射传热的影响[J]. 材料工程, 2014, 0(2): 65-69.
[10] 李光珠, 沈燕侠, 詹茂盛. 芳香族聚酰亚胺泡沫的隔热性能研究[J]. 材料工程, 2009, 0(7): 43-46.
[11] 周文英, 齐暑华, 涂春潮, 王彩凤, 袁江龙, 郭建. 混杂填料填充导热硅橡胶性能研究[J]. 材料工程, 2006, 0(8): 15-19.
[12] 苏铁健, 高书娟, 李树奎, 王富耻, 张朝晖. 几种不同硬度和热导率的钢中的绝热剪切带特征[J]. 材料工程, 2004, 0(7): 6-9.
[13] 乔梁, 周和平, 王少洪. 低温烧结AlN陶瓷的微结构和热导率[J]. 材料工程, 2003, 0(2): 23-26.
[14] 乔梁, 周和平, 陈可新, 傅仁利. 添加CaF2-YF3的AlN陶瓷的热导率[J]. 材料工程, 2003, 0(1): 10-13.
[15] 邓忠生, 魏建东, 王珏, 沈军, 周斌, 陈玲燕. SiO2气凝胶结构及其热学特性研究[J]. 材料工程, 1999, 0(12): 23-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn