Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (6): 101-105    DOI: 10.11868/j.issn.1001-4381.2017.001159
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
碳纤维表面涂层对碳纤维增强锂铝硅玻璃陶瓷复合材料热导率的影响
于长清1,2, 陈利1, 裴雨辰2
1. 天津工业大学 复合材料研究所 先进纺织复合材料教育部 重点实验室, 天津 300387;
2. 中国航天科工集团 航天 特种材料及工艺技术研究所, 北京 100074
Effect of Carbon Fiber Coating on Thermal Conductivity of Carbon Fiber Reinforced Lithium Alumina Silicate Glass-ceramics Composites
YU Chang-qing1,2, CHEN Li1, PEI Yu-chen2
1. Key Laboratory of Advanced Textile Composites, Institute of Composite Materials, Tianjin Polytechnic University, Tianjin 300387, China;
2. Institute of Aerospace Special Materials and Processing Technology, China Aerospace Science & Industry Corp., Beijing 100074, China
全文: PDF(3037 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 通过溶胶浸渍的方法在碳纤维表面涂覆锂硅溶胶,在高温热处理后,在碳纤维表面形成了二阶和四阶石墨插层化合物。采用涂层处理后碳纤维制备碳纤维增强锂铝硅(Cf/LAS)玻璃陶瓷复合材料。结果表明,碳纤维表面石墨插层化合物的形成,显著提高了Cf/LAS复合材料的热传导能力,提高热压烧结温度有利于热导率的提高。碳纤维表面无涂层处理的Cf/LAS复合材料的热导率在1.1~1.3W/(m·K)之间,碳纤维表面经过涂层处理后,Cf/LAS复合材料的热导率从1.3W/(m·K)提高到2.2W/(m·K),提高了70%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于长清
陈利
裴雨辰
关键词 碳纤维锂铝硅玻璃陶瓷复合材料热导率    
Abstract:The carbon fibers with two and four order graphite intercalation were fabricated by high temperature heat treatment of carbon fibers coated by lithium-silicate sol using sol impregnation method. After that, the as-prepared carbon fibers were applied to synthesize carbon fiber reinforced lithium alumina silicate (Cf/LAS) glass-ceramic composites. The results indicate that the increase of sintering temperature and the formation of graphite intercalated compounds on the surface of carbon fibers can significantly improve the thermal conductivity of Cf/LAS composites. Compared to the Cf/LAS composites without coatings 1.1-1.3W/(m·K), the thermal conductivity of Cf/LAS composites with coating treatment increases from 1.3W/(m·K) to 2.2W/(m·K), with the increase of 70%.
Key wordscarbon fiber    LAS    glass-ceramics composites    thermal conductivity
收稿日期: 2017-09-17      出版日期: 2018-06-14
中图分类号:  TB332  
通讯作者: 于长清(1980-),男,高级工程师,博士研究生,主要从事陶瓷基复合材料研究,联系地址:北京市丰台区云岗北里40号院(100074),E-mail:yuchangqing1980@163.com     E-mail: yuchangqing1980@163.com
引用本文:   
于长清, 陈利, 裴雨辰. 碳纤维表面涂层对碳纤维增强锂铝硅玻璃陶瓷复合材料热导率的影响[J]. 材料工程, 2018, 46(6): 101-105.
YU Chang-qing, CHEN Li, PEI Yu-chen. Effect of Carbon Fiber Coating on Thermal Conductivity of Carbon Fiber Reinforced Lithium Alumina Silicate Glass-ceramics Composites. Journal of Materials Engineering, 2018, 46(6): 101-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001159      或      http://jme.biam.ac.cn/CN/Y2018/V46/I6/101
[1] 吴松全, 李亚娟, 王福平. Li2O-Al2O3-SiO2 系玻璃陶瓷的制备方法和应用现状[J]. 硅酸盐通报, 2005(1):76-80. WU S Q, LI Y J, WANG F P. Preparation and application of Li2O-Al2O3-SiO2 glass-ceramics[J]. Bulletin of the Chinese Ceramic Society, 2005(1):76-80.
[2] 卢国锋, 许艳. 连续碳纤维增强陶瓷基复合材料的氧化行为和氧化防护研究[J]. 材料导报, 2012, 26(11):5-8. LU G F, XU Y. Oxidation behaviors and oxidation protection of carbon fiber reinforced ceramic matrix composites[J]. Materials Review, 2012, 26(11):5-8.
[3] BRAZHKIN V V, KATAYAMA Y, INAMURA Y, et al. Structural transformations in liquid, crystalline, and glassy B2O3 under high pressure[J]. Journal of Experimental & Theoretical Physics Letters, 2003, 78(6):393-397.
[4] TONG C Q,CHENG L F, YIN X W, et al. Oxidation behavior of 2D C/SiC composite modified by SiB4 particles in inter-bundle pores[J]. Composites Science and Technology, 2008, 68(3):602-607.
[5] WANG Z, DONG S M, HE P, et al. Fabrication of carbon fiber reinforced ceramic matrix composites with improved oxidation resistance using boron as active filler[J]. Journal of European Ceramic Society, 2010, 30(3):787-792.
[6] SEBASTIAN M T, JANTUNEN H. Low loss dielectric materials for LTCC applications[J]. International Materials Reviews, 2008, 53(2):57-90.
[7] NOWAK D, DZIEDZIC A. LTCC package for high temperature applications[J]. Microelectronics Reliability, 2011, 51(7):1241-1244.
[8] MATYASH I E, MINAILOVA I A, SERDEGA B K, BABICHUK I S. Research of optical and mechanical properties of lithium aluminosilicate glass-ceramics[J]. Journal of Non-Crystalline Solids, 2017, 459:94-98.
[9] LI B, WANG S L, FANG Y. Effect of Cr2O3 addition on crystallization, microstructure and properties of Li2O-Al2O3-SiO2 glass-ceramics[J].Journal of Alloys and Compounds,2017,693:9-15.
[10] WU S J, CHENG L F, ZHANG L T, et al. Oxidation behavior of 2D C/SiC with a multi-layer CVD SiC coating[J]. Surface & Coatings Technology, 2006, 200(14/15):4489-4492.
[11] CHEN J, XIONG X, XIAO P, et al. The catalytic effect of boric acid on polyacrylonitrile-based carbon fibers and the thermal conductivity of carbon/carbon composites produced from them[J]. Carbon, 2010, 48(8):2341-2346.
[12] LABRUQUōRE S, BOURRAT X, PAILLER R, et al. Structure and oxidation of C/C composites:role of the interface[J]. Carbon, 2001, 39(7):971-984.
[13] 谭婷婷. 高性能PAN基碳纤维微观结构与力学性能相关性研究[D]. 济南:山东大学,2013:7-8. TAN T T. Relationship between microstructure and mechanical property of high performance PAN-based carbon fibers[D]. Jinan:Shandong University, 2013:7-8.
[14] TOYODA M, KATOH M, INAGAKI M. Intercalation and exfoliation behavior of carbon fibers during electrolysis in H2SO4[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2/3):257-261.
[15] TOYODA M, YOSHINAGA A, AMAO Y, et al. Preparation of intercalation compounds of carbon fibers through electrolysis using phosphoric acid electrolyte and their exfoliation[J]. Journal of Physics and Chemistry of Solids, 2006, 67(5):1178-1181.
[16] INAGAKI M, TANAIKE O. Host effect on the formation of sodium-tetrahydrofuran-graphite intercalation compounds[J]. Synthetic Metals, 1995, 732:77-81.
[1] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[2] 李翰, 樊茂华, 王纳斯丹, 范保鑫, 冯振宇. 碳纤维环氧树脂复合材料热响应预报方法[J]. 材料工程, 2020, 48(5): 49-55.
[3] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[4] 康宸, 刘倓, 武帅, 赵雅娴, 徐樑华. PAN纤维热松弛行为控制与聚集态结构调控[J]. 材料工程, 2020, 48(4): 165-171.
[5] 冯艳艳, 李彦杰, 杨文, 钟开应. 原位生长法制备花瓣状氢氧化钴及其电化学性能[J]. 材料工程, 2020, 48(3): 121-126.
[6] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[7] 郑凌祺, 李刚, 杨小平, 李强, 石凌飞. 环糊精微球改性环氧树脂的制备及其碳纤维复合材料的X射线穿透性研究[J]. 材料工程, 2020, 48(11): 170-176.
[8] 李国丽, 彭公秋, 钟翔屿. 国产高性能碳纤维表征分析及复合材料力学性能研究[J]. 材料工程, 2020, 48(10): 74-81.
[9] 陈宇, 张代军, 李军, 温嘉轩, 陈祥宝. 石墨烯改性碳纤维树脂基复合材料的制备和性能评价[J]. 材料工程, 2020, 48(10): 82-87.
[10] 代晓腾, 马鸣龙, 张奎, 李永军, 袁家伟, 刘小稻, 王胜青. Ce对铸态Mg-6Zn合金组织与导热性能的影响[J]. 材料工程, 2020, 48(1): 92-97.
[11] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[12] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[13] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[14] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[15] 何烨, 肖建文, 姚烛威, 符应飘, 徐樑华, 曹维宇. 碳纤维表面物理结构对复合材料界面剪切强度的影响[J]. 材料工程, 2019, 47(2): 146-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn