Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (9): 80-87    DOI: 10.11868/j.issn.1001-4381.2017.001521
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性
周梦林1,2, 饶少凯1, 周均2, 郑照县1, 肖衡1, 郑靖1
1. 西南交通大学 材料先进技术教育部重点实验室摩擦学研究所, 成都 610031;
2. 浙江省医疗器械检验研究院, 杭州 310018
Fretting Wear Properties of Micro-arc Oxidation Treated Magnesium Alloy Under Condition of Simulated Bone Plate-screw Service
ZHOU Meng-lin1,2, RAO Shao-kai1, ZHOU Jun2, ZHENG Zhao-xian1, XIAO Heng1, ZHENG Jing1
1. Tribology Research Institute, Key Laboratory of Advanced Technologies of Materials(Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China;
2. Zhejiang Institute of Medical Device Testing, Hangzhou 310018, China
全文: PDF(4499 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用不同占空比(20%,30%,40%)对ZK60镁合金表面进行微弧氧化处理,利用体外模拟实验考察了镁合金在接骨板服役工况下的耐腐蚀性能和微动磨损特性。结果表明,经不同占空比微弧氧化处理后,镁合金的表面硬度和体液环境下的耐腐蚀性能接近,均显著高于镁合金基体。镁合金基体在接骨板服役工况下的微动磨损表面犁沟和腐蚀坑并存,磨损严重,磨损体积为13.1×106μm3,而微弧氧化处理镁合金的微动磨损显著减轻,损伤以犁削效应为主,不同占空比处理所得镁合金的磨损形貌和磨损体积接近,随占空比增大依次为6.6×106,6.1×106,6.5×106μm3。微弧氧化处理能显著提高ZK60镁合金在接骨板服役工况下的耐微动磨损性能,占空比对微弧氧化层的微观结构和微动磨损性能无显著影响。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周梦林
饶少凯
周均
郑照县
肖衡
郑靖
关键词 接骨板镁合金微弧氧化占空比微动磨损    
Abstract:The fretting wear behavior of micro-arc oxidation (MAO) treated ZK60 magnesium alloy under simulated bone plate-screw service condition was investigated. The MAO treatments on the surface of ZK60 magnesium alloy were conducted with different duty cycles of 20%, 30%, and 40%, respectively. Results show that the surface hardness and corrosion resistance of MAO-treated magnesium alloy specimens with different duty cycles are similar and are improved significantly in comparison with the bare magnesium alloy. Under the simulated bone plate-screw fretting condition, the worn surface of the bare magnesium alloy is characterized by ploughs and corrosion pits, accompanied with a high wear volume of 13.1×106μm3, while the wear is obviously decreased and mainly dominated by ploughs on the surface of the MAO-treated magnesium alloy. With the increase of duty cycle, the wear volume is 6.6×106,6.1×106μm3 and 6.5×106μm3, respectively. There is no obvious difference in the fretting wear behavior and the worn surface morphology among the MAO-treated ZK60 magnesium alloy specimens with different duty cycles. In sum, the anti-fretting wear performance of ZK60 magnesium alloy can be improved obviously after micro-arc oxidation treatment, and the duty cycle has little influence on the microstructure and fretting wear properties of the MAO layer on ZK60 magnesium alloy under the given experimental conditions.
Key wordsbone plate    magnesium alloy    micro-arc oxidation    duty cycle    fretting wear
收稿日期: 2017-12-12      出版日期: 2018-09-19
中图分类号:  R608  
  TG178  
通讯作者: 郑靖(1974-),女,研究员,博士,研究方向:生物摩擦学,联系地址:四川省成都市西南交通大学摩擦学研究所(610031),E-mail:zhengj168@163.com     E-mail: zhengj168@163.com
引用本文:   
周梦林, 饶少凯, 周均, 郑照县, 肖衡, 郑靖. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9): 80-87.
ZHOU Meng-lin, RAO Shao-kai, ZHOU Jun, ZHENG Zhao-xian, XIAO Heng, ZHENG Jing. Fretting Wear Properties of Micro-arc Oxidation Treated Magnesium Alloy Under Condition of Simulated Bone Plate-screw Service. Journal of Materials Engineering, 2018, 46(9): 80-87.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001521      或      http://jme.biam.ac.cn/CN/Y2018/V46/I9/80
[1] 陈先华, 耿玉晓, 刘娟. 镁及镁合金功能材料的研究进展[J]. 材料科学与工程学报, 2013, 31(1):148-152. CHEN X H, GENG Y X, LIU J. Research status of magnesium alloys as functional materials[J]. Journal of Materials Science and Engineering, 2013, 31(1):148-152.
[2] CHEN Y J, XU Z J, SMITH C, et al. Recent advances on the development of magnesium alloys for biodegradable implants[J]. Acta Biomaterialia, 2014, 10(11):4561-4573.
[3] NAGELS J, STOKDIJK M, ROZING P M. Stress shielding and bone resorption in shoulder arthroplasty[J]. Journal of Shoulder & Elbow Surgery, 2003, 12(1):35-39.
[4] HAN H S, KIM Y Y, KIM Y C, et al. Bone formation within the vicinity of biodegradable magnesium alloy implant in a rat femur model[J]. Metals and Materials International, 2012, 18(2):243-247.
[5] CHAYA A, YOSHIZAWA S, VERDELIS K, et al. In vivo study of magnesium plate and screw degradation and bone fracture healing[J]. Acta Biomaterialia, 2015, 18:262-269.
[6] AZEVEDO C R F. Failure analysis of a commercially pure titanium plate for osteosynthesis[J]. Engineering Failure Analysis, 2003, 10(2):153-164.
[7] SANTOS C T, BARBOSA C, MONTEIRO M J, et al. Fretting corrosion tests on orthopedic plates and screws made of ASTM F138 stainless steel[J]. Research on Biomedical Engineering, 2015, 31(2):169-175.
[8] TAVARES S S M, MAINIER F B, ZIMMERMAN F, et al. Characterization of prematurely failed stainless steel orthopedic implants[J]. Engineering Failure Analysis, 2010, 17(5):1246-1253.
[9] 王志申, 孙志华, 王强,等. ZM6铸造镁合金微弧氧化膜层性能研究[J]. 材料工程, 2015, 43(10):55-59. WANG Z S, SUN Z H, WANG Q, et al. Performance of micro arc oxidation coating of ZM6 cast magnesium alloy[J]. Journal of Materials Engineering, 2015, 43(10):55-59.
[10] 殷毅, 张强, 齐峥嵘,等. 微弧氧化ZK60镁合金生物安全性和降解性的体内实验研究[J]. 中国骨伤, 2013, 26(5):423-428. YIN Y, ZHANG Q, QI Z R, et al. In vivo experimental study on MAO-ZK60 magnesium alloy bio-safety and degradation[J]. China Journal of Orthopaedics and Traumatology, 2013, 26(5):423-428.
[11] YU H J, DONG Q, DOU J H, et al. Structure and in vitro bioactivity of ceramic coatings on magnesium alloys by microarc oxidation[J]. Applied Surface Science, 2016, 388:114-119.
[12] LIN X, TAN LL, ZHANG Q, et al. The in vitro degradation process and biocompatibility of a ZK60 magnesium alloy with a forsterite-containing micro-arc oxidation coating[J]. Acta Biomaterialia, 2013, 9(10):8631-8642.
[13] ZHANG X P, ZHAO Z P, WU F M, et al. Corrosion and wear resistance of AZ91D magnesium alloy with and without micro-arc oxidation coating in Hank's solution[J]. Journal of Materials Science, 2007, 42(20):8523-8528.
[14] 陈玲玲, 戢鑫, 王彩萍,等. AZ31镁合金微弧氧化Ca-P膜层在人体仿生液中的磨损特性[J]. 材料保护, 2015, 48(3):1-5. CHEN L L, ZHE X, WANG C P, et al. Wear resistance of micro-arc oxidation coating on AZ31 magnesium alloy substrate in simulated body fluid[J]. Materials Protection, 2015, 48(3):1-5.
[15] CHEN J, WANG Z X, LU S. Effects of electric parameters on microstructure and properties of MAO coating fabricated on ZK60 Mg alloy in dual electrolyte[J]. Rare Metals, 2012, 31(2):172-177.
[16] 崔学军, 王荣, 魏劲松,等. 电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34(6):495-501. CUI X J, WANG R, WEI J S, et al. Effect of electrical parameters on micromorphology and corrosion resistance of micro-arc oxidation coating on AZ31B Mg alloy[J]. Journal of Chinese Society for Corrosion & Protection, 2014, 34(6):495-501.
[17] YU L, CAO J H, CHENG Y L. An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles[J]. Surface and Coatings Technology, 2015, 276:266-278.
[18] WU X H, SU P B, JIANG Z H, et al. Influences of current density on tribological characteristics of ceramic coatings on ZK60 Mg alloy by plasma electrolytic oxidation[J]. ACS Applied Materials & Interfaces, 2010, 2(3):808-812.
[19] HUSSEIN R O, NIE X, NORTHWOOD D O. Plasma electrolytic oxidation (PEO) coatings on Mg-alloys for improved wear and corrosion resistance[J]. WIT Transactions on Engineering Sciences, 2015, 91:163-176.
[20] ZHANG Q, LIN X, QI Z R, et al. Magnesium alloy for repair of lateral tibial plateau defect in minipig model[J]. Journal of Materials Science & Technology, 2013, 29(6):539-544.
[21] ZHENG Y F, GU X N, WITTE F. Biodegradable metals[J]. Materials Science & Engineering R:Reports, 2014, 77(2):1-34.
[22] 周均, 周梦林, 郑靖,等. 表面处理镁合金接骨板耐蚀性和微动磨损性能研究[J]. 中国医疗器械杂志, 2016, 40(5):347-350. ZHOU J, ZHOU M L, ZHENG J, et al. Study of the anti-corrosion and anti-fretting properties of surficial treated magnesium alloy bone plate[J]. Chinese Journal of Medical Instrumentation, 2016, 40(5):347-350.
[23] LIN X Z, ZHU M H, ZHENG J F, et al.Fretting wear of micro-arc oxidation coating prepared on Ti6Al4V alloy[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(4):537-546.
[24] YANG X M, LI M, LIN X, et al.Enhanced in vitro biocompatibility/bioactivity of biodegradable Mg-Zn-Zr alloy by micro-arc oxidation coating contained Mg2SiO4[J]. Surface & Coatings Technology, 2013, 233:65-73.
[25] LIN X, YANG X M, TAN L L, et al.In vitro degradation and biocompatibility of a strontium-containing micro-arc oxidation coating on the biodegradable ZK60 magnesium alloy[J]. Applied Surface Science, 2014, 288:718-726.
[26] NARAYANAN T S N S, PARK I S, MIN H L. Strategies to improve the corrosion resistance of micro-arc oxidation (MAO) coated magnesium alloys for degradable implants:prospects and challenges[J]. Progress in Materials Science, 2014, 60(3):1-71.
[1] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[2] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[3] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[4] 张先炼, 何晓聪, 邢保英, 曾凯. TA1纯钛与1420铝锂合金异质薄板自冲铆接微动疲劳特性[J]. 材料工程, 2019, 47(4): 143-151.
[5] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[6] 常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
[7] 屈盛官, 杨章选, 赖福强, 和锐亮, 付志强, 李小强. 渗铜量对铁基粉末冶金气门座圈材料微动磨损性能的影响[J]. 材料工程, 2018, 46(7): 136-143.
[8] 刘军, 张金玲, 渠治波, 于彦冲, 许并社, 王社斌. 稀土Gd对AZ31镁合金耐蚀性能的影响[J]. 材料工程, 2018, 46(6): 73-79.
[9] 刘秀波, 周仲炎, 翟永杰, 乔世杰, 徐江宁, 罗迎社, 涂溶. 热处理对激光熔覆钛基复合涂层组织和微动磨损性能的影响[J]. 材料工程, 2018, 46(5): 79-85.
[10] 金玉花, 甘瑞根, 陈飞, 邵庆丰, 王希靖, 郭廷彪. 搅拌摩擦焊辅助Al/Zn/Mg接头扩散连接[J]. 材料工程, 2018, 46(3): 55-60.
[11] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[12] 唐仕光, 陈泉志, 蒋智秋, 童庆, 董婉冰, 李伟洲. 激光重熔处理对铝合金微弧氧化膜组织与性能的影响[J]. 材料工程, 2018, 46(12): 157-164.
[13] 石晶晶, 叶朋, 崔凯旋, 汪炳叔, 邓丽萍, 王晨, 李强. 孪晶诱发的AZ31镁合金静态再结晶行为[J]. 材料工程, 2018, 46(11): 134-140.
[14] 何柏林, 江明明, 于影霞, 李力. 超声冲击处理MB8镁合金十字接头的表层组织及疲劳性能[J]. 材料工程, 2018, 46(10): 70-76.
[15] 黄祖江, 蒋智秋, 董婉冰, 童庆, 李伟洲. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能[J]. 材料工程, 2018, 46(1): 44-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn