Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 154-160    DOI: 10.11868/j.issn.1001-4381.2017.001550
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
新型高密度合金的组织与性能
刘冠旗1, 王春旭1, 刘少尊1, 厉勇1, 谭成文2, 刘志超2
1. 钢铁研究总院 特殊钢研究所, 北京 100081;
2. 北京理工大学 材料学院, 北京 100081
Microstructure and properties of a new high density alloy
LIU Guan-qi1, WANG Chun-xu1, LIU Shao-zun1, LI Yong1, TAN Cheng-wen2, LIU Zhi-chao2
1. Institute for Special Steels, Central Iron and Steel Research Institute, Beijing 100081, China;
2. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
全文: PDF(3469 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 基于面心立方固溶体结构和时效强化机理,设计出一种新型高密度合金NiW750。利用SEM,TEM对合金微观组织进行观察,采用分离式Hopkinson压杆实验研究合金在动态压缩条件下的特点,并将此合金与其领域常用材料超高强度钢G50及钨合金93WNiFe进行对比。结果表明:NiW750合金在3种材料中综合性能最好。在750℃/5h时效后,合金抗拉强度可达1746MPa,冲击韧度(akU)可达113J/cm2。在动态加载条件下,材料存在应变率硬化效应,其动态流变应力可达到2250MPa左右。试样在与中心轴线成45°方向形成绝热剪切带,在应变率约5500s-1条件下,带宽80~150μm,过渡区较宽,避免材料剪切断裂过早出现。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘冠旗
王春旭
刘少尊
厉勇
谭成文
刘志超
关键词 高密度合金面心立方时效强化力学性能绝热剪切带    
Abstract:A new high density alloy NiW750 was developed, which was based on the faced-center cubic solid solution structure and aging strengthening mechanism. Microstructure of the alloy was observed by SEM and TEM. The material characteristics under dynamic compressing loading were investigated by using the split Hopkinson pressure bar test. The comparison among the NiW750, ultra high strength steel G50 and tungsten 93WNiFe was also conducted.The results show that the NiW750 high density alloy has the best comprehensive properties among three materials. After aging at 750℃/5h,the tensile strength of NiW750 can achieve up to 1746MPa,while the impact toughness (akU) can achieve 113J/cm2. Under the condition of dynamic loading, the material shows strain rate hardening effect obviously as its dynamic flow stress can reach about 2250MPa. The adiabatic shear bands are formed within specimens in the direction of 45° to the central axis with a bandwidth of 80-150μm at the strain rate of about 5500s-1 and a wide transition zone, so as to avoid the premature emergence of the shear fracture.
Key wordshigh density alloy    faced-center cubic    aging strengthening    mechanical property    adiabatic shear band
收稿日期: 2017-12-17      出版日期: 2019-08-22
中图分类号:  TG146.4  
通讯作者: 王春旭(1971-),男,教授级高级工程师,博士,主要从事超高强度钢及合金方面的研究工作,联系地址:北京市海淀区高梁桥斜街13号院钢铁研究总院南院新材料大楼729(100081),E-mail:wangchunxu@nercast.com     E-mail: wangchunxu@nercast.com
引用本文:   
刘冠旗, 王春旭, 刘少尊, 厉勇, 谭成文, 刘志超. 新型高密度合金的组织与性能[J]. 材料工程, 2019, 47(8): 154-160.
LIU Guan-qi, WANG Chun-xu, LIU Shao-zun, LI Yong, TAN Cheng-wen, LIU Zhi-chao. Microstructure and properties of a new high density alloy. Journal of Materials Engineering, 2019, 47(8): 154-160.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001550      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/154
[1] 才鸿年,王鲁,李树奎.战斗部材料研究进展[J].中国工程科学,2002,4(12):21-27. CAI H N,WANG L,LI S K. Research progress in warhead materials[J].Engineering Science, 2002,4(12):21-27.
[2] 袁书强,张保玉,陈子明,等.战斗部用钨合金材料现状及发展状况[J].中国钨业,2015,30(2):49-52. YUAN S Q,ZHANG B Y,CHEN Z M,et al.Current status and development of tungsten alloys using in warheads[J].China Tungsten Industry, 2015,30(2):49-52.
[3] 葛鹏,赵永庆,周廉.从导弹战斗部用钛合金的研究看材料的开发[J].材料导报,2003,17(12):26-28. GE P,ZHAO Y Q,ZHOU L. Material development as viewed from study of titanium alloys used in missile warhead[J]. Materials Review, 2003,17(12):26-28.
[4] 薛智,张治民,于建民,等.30CrMnSiNi2A钢的动态屈服强度研究[J].兵器材料科学与工程,2009,32(1):10-13. XUE Z,ZHANG Z M,YU J M, et al. Research on dynamic yield strength of steel 30CrMnSiNi2A[J].Ordnance Material Science and Engineering, 2009,32(1):10-13.
[5] 刘盼萍,尹燕,常列珍,等.正火态50SiMnVB钢Johnson-Cook本构方程的建立[J].兵器材料科学与工程,2009,32(1):45-49. LIU P P,YIN Y,CHANG L Z, et al. Establishing of Johnson-Cook constitutive equation for normalized steel 50SiMnVB[J]. Ordnance Material Science and Engineering,2009,32(1):45-49.
[6] ODESHI A G,BASSIM M N,AL-AMEERI S. Effect of heat treatment on adiabatic shear bands in a high-strength low alloy steel[J]. Materials Science and Engineering:A, 2006,419(1/2):69-75.
[7] ODESHI A G,BASSIM M N,AL-AMEERI S, et al. Dynamic shear band propagation and failure in AISI 4340 steel[J]. Journal of Materials Processing Technology, 2005,169(2):150-155.
[8] 王可慧,张颖,段建,等.G50钢的力学性能实验研究[J].兵工学报,2009,30(增刊2):247-250. WANG K H, ZHANG Y,DUAN J, et al. Experimental research on the mechanical properties of G50 alloy steel[J]. Acta Armamentarii,2009,30(Suppl 2):247-250.
[9] 张胜男,程兴旺. Aermet100超高强度钢的动态力学性能研究[J].材料工程,2015,43(12):24-30. ZHANG S N,CHENG X W. Dynamic mechanical properties of Aermet100 ultra-high strength steel[J].Journal of Materials Engineering, 2015,43(12):24-30.
[10] LIU J X, LI S K, ZHOU X Q, et al. Adiabatic shear banding in a tungsten heavy alloy processed by hot-hydrostatic extrusion and hot torsion[J]. Scripta Materialia, 2008,59(12):1271-1274.
[11] LI Y Y, HU K, LI X Q, et al. Fine-grained 93W-5.6Ni-1.4Fe heavy alloys with enhanced performance prepared by spark plasma sintering[J]. Materials Science and Engineering:A, 2013,573:245-252.
[12] HU K, LI X Q, GUAN M, et al. Dynamic deformation beha-vior of 93W-5.6Ni-1.4Fe heavy alloy prepared by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials,2016,58:117-124.
[13] 刘晓俊,任会兰,宁建国. 不同配比W/Zr活性材料冲击反应实验研究[J].材料工程,2017,45(4):77-83. LIU X J, REN H L, NING J G. Experimental study on impact response of W/Zr reactive materials with different proportions[J]. Journal of Materials Engineering, 2017, 45(4):77-83.
[14] RAVI KIRAN U,PANCHAL A,SANKARANARAYANA M,et al. Effect of alloying addition and microstructural parameters on mechanical properties of 93% tungsten heavy alloys[J]. Materials Science and Engineering:A, 2015,640:82-90.
[15] GONG X, FAN J L, DING F, et al. Effect of tungsten content on microstructure and quasi-static tensile fracture characteristics of rapidly hot-extruded W-Ni-Fe alloys[J]. International Journal of Refractory Metals and Hard Materials,2012,30(1):71-77.
[16] PERZYNA P. Fundamental problems in viscoplasticity[J]. Advances in Applied Mechanics, 1966, 9(2):244-368.
[17] SUNWOO A J, BECKE R, GOTO D M, et al. Adiabatic shear band formation in explosively driven Fe-Ni-Co alloy cylinders[J]. Scripta Materialia, 2006,55(3):247-250.
[18] 田杰,胡时胜. G50钢动态力学性能的实验研究[J].工程力学,2006,23(6):107-109. TIAN J, HU S S. Research of dynamic mechanical behaviors of G50 steel[J].Engineering Mechanics,2006,23(6):107-109.
[19] KIM D S, NEMAT-NASSER S, ISAACS J B, et al. Adiabatic shear band in WHA in high-strain-rate compression[J].Mechanic of Materials, 1998,28(1):227-236.
[1] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[2] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[3] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
[4] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[5] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[6] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[7] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[8] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[9] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[10] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[11] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[12] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[13] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[14] 崔岩, 项俊帆, 曹雷刚, 杨越, 刘园. 碳化硅颗粒表面吸附质对铝基复合材料制备及力学性能的影响[J]. 材料工程, 2019, 47(4): 160-166.
[15] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn