Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (11): 155-160    DOI: 10.11868/j.issn.1001-4381.2017.001560
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
超声冲击处理时间对17CrNiMo6钢表层组织细化与性能的影响
倪永恒, 朱有利, 侯帅
陆军装甲兵学院 装备保障与再制造系, 北京 100072
Effects of Ultrasonic Impact Treatment Time on Surface Structure Refinement and Properties of 17CrNiMo6 Steel
NI Yong-heng, ZHU You-li, HOU Shuai
Department of Equipment Support and Remanufacturing, Army Academy of Armored Forces, Beijing 100072, China
全文: PDF(4970 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 对17CrNiMo6钢材料表面进行超声冲击处理,分析不同处理时间对材料显微硬度、表面残余压应力和表层组织细化行为的影响,并对表面细晶层组织结构分布进行研究。结果表明:未处理材料表面残余压应力为-223.7MPa,硬度为650HV,晶粒尺寸约为8~10μm。超声冲击处理60s后,17CrNiMo6钢试样表面残余压应力为-463.4MPa,表层深度5~10μm范围内晶粒尺寸约为1~1.5μm,晶粒细化层深度约为250μm。超声冲击处理120s后,试样表面残余压应力约为-587.2MPa,表层深度5~10μm范围内晶粒尺寸约为200~300nm,晶粒细化层深度约为400μm。超声冲击处理使材料产生了剧烈的塑性变形,大尺寸晶粒在高应变速率、高转动速率和循环剪切应力作用下产生高密度位错,晶界密度大幅提高,加速了位错运动与晶粒间的转动。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
倪永恒
朱有利
侯帅
关键词 超声冲击处理17CrNiMo6钢表面组织细化显微组织    
Abstract:Ultrasonic impact treatment(UIT) was used for surface enhancement of 17CrNiMo6 steel. The effects of UIT time on the hardness, surface residual compressive stress and the surface structure refine ment were analyzed. Microstructure distribution of the structure refined layer was studied. The results show that, unprocessed material surface residual stress is about -223.7MPa, hardness is about 650HV, grain size is about 8-10μm. After UIT for 60s, surface residual compressive stress is about -463.4MPa, grain size is about 1-1.5μm within 5-10μm in depth, the depth of grain refined layer is about 250μm whereas. with UIT for 120s, surface residual compressive stress is about -587.2MPa, grain size is about 200-300nm within 5-10μm in depth, the depth of grain refined layer is about 250μm. Surface plastic deformation is greatly enhanced by ultrasonic impact treatment,high-density dislocation is produced under the high strain rate, high rotational speed and cyclic shear in large size gain, grain boundary density is greatly improved, and dislocation movement and grain rotation is accelerated.
Key wordsultrasonic impact treatment    17CrNiMo6 steel    surface structure refinement    microstructure
收稿日期: 2017-12-18      出版日期: 2018-11-19
中图分类号:  TG142.1  
  TG668  
基金资助: 
通讯作者: 朱有利(1963-),男,教授,博士,从事专业:材料抗疲劳与延寿技术,联系地址:北京市丰台区杜家坎21号院(100072),E-mail:zhuyouli2011@sina.com     E-mail: zhuyouli2011@sina.com
引用本文:   
倪永恒, 朱有利, 侯帅. 超声冲击处理时间对17CrNiMo6钢表层组织细化与性能的影响[J]. 材料工程, 2018, 46(11): 155-160.
NI Yong-heng, ZHU You-li, HOU Shuai. Effects of Ultrasonic Impact Treatment Time on Surface Structure Refinement and Properties of 17CrNiMo6 Steel. Journal of Materials Engineering, 2018, 46(11): 155-160.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2017.001560      或      http://jme.biam.ac.cn/CN/Y2018/V46/I11/155
[1] 陈国民.对我国齿轮渗碳淬火技术的评述[J].金属热处理,2008,33(1):25-33. CHEN G M.Review on carburizing and hardening technology gears in China[J].Heat Treatment of Metals,2008,33(1):25-33.
[2] 苗华军,王之香,王玉玲.风力发电机主轴用材料17CrNiMo6低温冲击性能影响因素分析[J].山西冶金,2012,35(1):14-15. MIAO H J,WANG Z X,WANG Y L.Analysis of influencing factor on low-temperature impact performance of 17CrNiMo6 motor shaft used fan-driven generator[J].Shanxi Metallurgy,2012,35(1):14-15.
[3] 王燕礼,朱有利,刘忠伟,等.HXD1机车牵引电机转轴组件断裂失效分析[J].材料科学与工艺,2016,24(4):67-73. WANG Y L,ZHU Y L,LIU Z W,et al.Fracture failure analysis of pulling motor revolving shaft subassembly of HXD1 locomotive[J].Materials Science & Technology,2016,24(4):67-73.
[4] 任学冲,陈利钦,刘鑫贵,等.表面超声滚压处理对高速列车车轴钢疲劳性能的影响[J].材料工程,2015,43(12):1-5. REN X C,CHEN L Q,LIU X G,et al.Effects of surface ultrasonic rolling processing on fatigue properties of axle steel used on high speed train[J].Journal of Materials Engineering,2015,43(12):1-5.
[5] SHAW L L,TIAN J W,ORTIZ A L,et al.A direct comparison in the fatigue resistance enhanced by surface severe plastic deformation and shot peening in a C-2000 superalloy[J].Materials Science and Engineering:A,2010,527(4/5):986-994.
[6] 鲁连涛,盐泽和章,姜燕.深层滚压加工对高碳铬轴承钢超长寿命疲劳行为的影响[J].金属学报,2006,42(5):515-520. LU L T,SHIOZAWA K,JIANG Y.Influence of deeply rolling process on ultra-long life fatigue behavior of high carbon-chromium bearing steel[J].Acta Metallurgica Sinica,2006,42(5):515-520.
[7] 葛茂忠,项建云,张永康.激光冲击处理对AZ31B镁合金力学性能的影响[J].材料工程,2013(9):54-59. GE M Z,XIANG J Y,ZHANG Y K.Effect of laser shock processing on mechanical properties of AZ31B magnesium alloy[J].Journal of Materials Engineering,2013(9):54-59.
[8] 朱有利,王燕礼,边飞龙,等.金属材料超声表面强化技术的研究与应用进展[J].机械工程学报,2014,50(20):35-45. ZHU Y L,WANG Y L,BIAN F L,et al.Progresses on research and application of metal ultrasonic surface enhancement technologies[J].Journal of Mechanical Engineering,2014,50(20):35-45.
[9] GAO Y K.Improvement of fatigue property in 7050-T7451 aluminum alloy by laser peening and shot peening[J].Materials Science and Engineering:A,2011,528(10/11):3823-3828.
[10] 李占明,朱有利,杜晓坤,等.超声冲击处理2024铝合金焊接接头组织性能研究[J].稀有金属材料与工程,2012(增刊2):307-311. LI Z M,ZHU Y L,DU X K,et al.Microstructures and mechanical properties of 2024 aluminum alloy welded joint after ultrasonic peening treatment[J].Rare Metal Materials and Engineering,2012(Suppl 2):307-311.
[11] ROBERT J C,ROBERT D,HUSSAM M.Inspection and management of bridges with fracture critical details[R].Washington D C,US:Transportation Research Board,2005.
[12] VALIEV R Z,ISLAMGALIEV R K,ALEXANDROV I V.Bulk nanostructured materials from severe plastic deformation[J].Progress in Materials Science,1999,45(2):103-189.
[13] 巴德玛,马世宁,李长青,等.超音速微粒轰击45钢表面纳米化的研究[J].材料科学与工艺,2007,15(3):342-346. BA D M,MA S N,LI C Q,et al.Surface nanocrystallization of 45 steel induced by supersonic fine particles bombarding[J].Materials Science & Technology,2007,15(3):342-346.
[14] 王虎,詹肇麟,吴云霞,等.高能喷丸对ST12钢表面性能的影响[J].材料热处理学报,2013,34(增刊2):184-187. WANG H,ZHAN Z L,WU Y X,et al.Effect of high-energy shot peening on the surface performance of ST12 steel[J].Transactions of Materials and Heat Treatment,2013,34(Suppl 2):184-187.
[15] 麦永津,揭晓华,于能,等.7050铝合金的表面增压喷丸纳米化[J].机械工程材料,2009,33(12):50-53. MAI Y J,JIE X H,YU N,et al.Surface nanocrystallization of 7050 aluminum alloy by added-pressure shot peening[J].Mechanicals for Material Engineering,2009,33(12):50-53.
[16] 王燕礼.航空铝合金连接孔超声与冷扩孔强化机理研究[D].北京:装甲兵工程学院,2015. WANG Y L.Study on enhancement mechanism of ultrasound and cold expansion for structure connecting holes of aviation aluminum-alloy[D].Beijing:Academy of Armored Force Engineering,2015.
[17] SIU K W,NGAN A H W,JONES I P.New insight on acoustoplasticity-ultrasonic irradiation enhances subgrain formation during deformation[J].International Journal of Plasticity,2011,27(5):788-800.
[18] 万响亮,李光强,周博文,等.奥氏体不锈钢晶粒细化对形变机制和力学性能的影响[J].材料工程,2016,44(8):29-33. WAN X L,LI G Q,ZHOU B W,et al.Effect of grain refinement on deformation mechanism and mechanical properties of austenitic stainless steel[J].Journal of Materials Engineering,2016,44(8):29-33.
[19] 卢柯.梯度纳米结构材料[J].金属学报,2015,51(1):1-10. LU K.Gradient nanostructured materials[J].Acta Metallurgica Sinica,2015,51(1):1-10.
[20] NALLA R K,ALTENBERGER I,NOSTER U,et al.On the influence of mechanical surface treatments-deep rolling and laser shock peening-on the fatigue behavior of Ti-6Al-4V at ambient and elevated temperatures[J].Materials Science and Engineering:A,2003,355(1):216-230.
[21] HUANG H W,WANG Z B,LU J,et al.Fatigue behaviors of AlSi 316L stainless steel with a gradient nanostructured surface layer[J].Acta Materialia,2015,87:150-160.
[22] 朱有利,叶雄林,黄元林.超声冲击处理改善22SiMn2TiB装甲钢抗应力腐蚀性能研究[J].装甲兵工程学院学报,2008,22(6):76-78,84. ZHU Y L,YE X L,HUANG Y L.Research on ultrasonic impact treatment in improving stress corrosion of 22SiMn2TiB armor plate[J].Journal of Academy of Armored Force Engineering,2008,22(6):76-78,84.
[23] BAGHERIFARD S,FERNANDEZ-PARIENTE I,GHELICHI R,et al.Fatigue behavior of notched steel specimens with nanocrystallized surface obtained by severe shot peening[J].Materials & Design,2013,45:497-503.
[24] XU C,CUI Y,HAN Q.Severe plastic deformation of steel induced by ultrasonic vibrations[J].Open Journal of Metal,2013,3(1):1-5.
[25] HUNG J C,TSAI Y C.Investigation of the effects of ultrasonic vibration-assisted micro-upsetting on brass[J].Materials Science and Engineering:A,2013,580(10):125-132.
[26] LI D,CHEN H N,XU H.The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel[J].Applied Surface Science,2009,255(6):3811-3816.
[1] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[2] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[3] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[4] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[5] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
[6] 黄高仁, 孙乙萌, 张利, 刘玉林. Mg含量对亚快速凝固Al-Zn-Mg-Cu-Zr合金组织与性能的影响[J]. 材料工程, 2018, 46(9): 109-114.
[7] 彭竹琴, 李俊魁, 卢金斌, 马明星, 吴玉萍. 稀土CeO2对AlCoCuFeMnNi高熵合金组织与性能的影响[J]. 材料工程, 2018, 46(8): 91-97.
[8] 邓德伟, 牛婷婷, 田鑫, 刘海英, 孙奇, 张林. 水导轴承等离子堆焊Ni60合金组织及其耐腐蚀性能[J]. 材料工程, 2018, 46(5): 106-111.
[9] 肖代红, 刘彧, 余永新, 周鹏飞, 刘文胜, 马运柱. 放电等离子烧结对TiB2/AlCoCrFeNi复合材料组织与性能的影响[J]. 材料工程, 2018, 46(3): 22-27.
[10] 龚玉兵, 王善林, 李宏祥, 柯黎明, 陈玉华, 马彬. 脉冲宽度对激光熔覆FeSiB涂层组织与硬度的影响[J]. 材料工程, 2018, 46(3): 74-80.
[11] 刘伟, 熊华平, 李能, 陈波. 激光熔化沉积工艺对Nb-16Si二元合金显微组织的影响[J]. 材料工程, 2018, 46(2): 27-33.
[12] 贺毅强, 徐虎林, 钱晨晨, 丁云飞, 冯文, 陈劲松, 李化强, 冯立超. 基体成分对SiCP/Al-Fe-V-Si复合材料显微组织与性能的影响[J]. 材料工程, 2018, 46(12): 124-130.
[13] 邢如飞, 许星元, 黄双君, 王磊, 周松, 许良. 激光沉积修复TA15钛合金微观组织及力学性能[J]. 材料工程, 2018, 46(12): 144-150.
[14] 郭小童, 郑为为, 肖程波, 郑运荣, 冯强. K465高温合金短时超温后的显微组织退化及拉伸性能[J]. 材料工程, 2018, 46(10): 77-86.
[15] 王跃明, 唐求豪, 闫志巧, 王芬. 真空室压力对低压等离子喷涂成形钨靶材显微组织及性能的影响[J]. 材料工程, 2018, 46(10): 104-112.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn