Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (1): 1-10    DOI: 10.11868/j.issn.1001-4381.2018.000175
  石墨烯专栏 本期目录 | 过刊浏览 | 高级检索 |
石墨烯增强金属基航空复合材料研究进展
张丹丹1,2, 沈洪雷1,2, 曹霞2, 叶煜松2,3, 张啸2, 叶历2, 王梦秋2
1. 重庆工商大学 制造装备机构设计与控制重庆市重点实验室, 重庆 400067;
2. 常州工学院 机械与车辆工程学院, 江苏 常州 213032;
3. 常州大学 材料科学与工程学院, 江苏 常州 213164
Research progress in graphene reinforced aeronautical metal matrix composites
ZHANG Dan-dan1,2, SHEN Hong-lei1,2, CAO Xia2, YE Yu-song2,3, ZHANG Xiao2, YE Li2, WANG Meng-qiu2
1. Chongqing Key Laboratory of Manufacturing Equipment Mechanism Design and Control, Chongqing Technology and Business University, Chongqing 400067, China;
2. School of Mechanical and Vehicle Engineering, Changzhou Institute of Technology, Changzhou 213032, Jiangsu, China;
3. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
全文: PDF(746 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 本文综述了石墨烯增强金属基航空复合材料的研究现状,归纳了该种复合材料的制备方法,讨论了石墨烯对其性能的影响及机制。指出目前高含量、排列石墨烯增强金属基航空复合材料的研究还比较缺乏,涉及的工艺参数、组织结构、界面化学及高温物理性能等相关问题仍需进一步研究,并提出未来的研究重点应由制备方法等工艺性探讨向微观复合构型设计的思路转变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张丹丹
沈洪雷
曹霞
叶煜松
张啸
叶历
王梦秋
关键词 石墨烯金属基复合材料制备方法航空航天    
Abstract:The research status of graphene reinforced metal matrix aeronautical composites was reviewed, and its preparation methods were summarized. The effect of graphene on the properties of composites and mechanisms were discussed. At present, there is still lack of the research on the high content of aligned graphene reinforced metal matrix aeronautical composites. It was pointed out some related problems that need further study, including technological parameters, microstructure, interface chemistry and high temperature physical properties, etc. The emphasis of the future research should be changed from the process of preparation method to the design of micro composite configuration.
Key wordsgraphene    metal matrix composites    preparation method    aerospace
收稿日期: 2018-02-09      出版日期: 2019-01-16
中图分类号:  TB331  
通讯作者: 张丹丹(1987-),男,博士,讲师,研究方向:新型功能复合材料,联系地址:江苏省常州市新北区辽河路666号常州工学院机械与车辆工程学院(213032),E-mail:zhangdd@czust.edu.cn     E-mail: zhangdd@czust.edu.cn
引用本文:   
张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
ZHANG Dan-dan, SHEN Hong-lei, CAO Xia, YE Yu-song, ZHANG Xiao, YE Li, WANG Meng-qiu. Research progress in graphene reinforced aeronautical metal matrix composites. Journal of Materials Engineering, 2019, 47(1): 1-10.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000175      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/1
[1] 樊建中, 肖伯律, 徐骏, 等. SiCp/Al复合材料在航空航天领域的应用与发展[J]. 材料导报, 2007, 21(10):98-101. FAN J Z, XIAO B L, XU J, et al. Development and applications of SiCp/Al composites in aerospace field[J]. Materials Review, 2007, 21(10):98-101.
[2] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696):666-669.
[3] STANKOVICH S, DIKIN D A, DOMMETT G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442:282-286.
[4] RAFIEE M A, RAFIEE J, WANG Z, et al. Enhanced mechanical properties of nanocomposites at low graphene content[J]. ACS Nano, 2009, 3(12):3884-3890.
[5] 张丹丹. 石墨烯/铜复合材料的制备、组织及力学性能研究[D]. 秦皇岛:燕山大学, 2016. ZHANG D D. Preparation,microstructure and mechanical properties of copper matrix composites reinforced by graphene materials[D]. Qinhuangdao:Yanshan University, 2016.
[6] BAIG Z, MAMAT O, MUSTAPHA M. Recent progress on the dispersion and the strengthening effect of carbon nanotubes and graphene-reinforced metal nanocomposites:a review[J]. Critical Reviews in Solid State and Materials Sciences, 2016, 41(6):1-46.
[7] XAVIOR M A, KUMAR H G P. Processing and characterization techniques of graphene reinforced metal matrix composites (GRMMC):a review[J]. Materials Today:Proceedings, 2017, 4(2):3334-3341.
[8] BARTOLUCCI S F, PARAS J, RAFIEE M A, et al. Graphene-aluminum nanocomposites[J]. Materials Science and Engineering:A, 2011, 528(27):7933-7937.
[9] PÉREZ-BUSTAMANTE R,BOLAÑOS-MORALES D,BONILLA-MARTÍNEZ J,et al. Microstructural and hardness behavior of graphene-nanoplatelets/aluminum composites synthesized by mechanical alloying[J]. Journal of Alloys and Compounds, 2014, 615(Suppl 1):578-582.
[10] XU Z S, SHI X L, ZHAI W Z, et al. Preparation and tribological properties of TiAl matrix composites reinforced by multilayer graphene[J]. Carbon, 2014, 67:168-177.
[11] ZHANG H, XU C, XIAO W, et al. Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion[J]. Materials Science and Engineering:A, 2016, 658:8-15.
[12] BASTWROS M, KIM G Y, ZHU C, et al. Effect of ball milling on graphene reinforced Al6061 composite fabricated by semi-solid sintering[J]. Composites Part B:Engineering, 2014, 60:111-118.
[13] YAN S J, DAI S L, ZHANG X Y, et al. Investigating aluminum alloy reinforced by graphene nanoflakes[J]. Materials Science and Engineering:A, 2014, 612:440-444.
[14] BOOSTANI A F, TAHAMTAN S, JIANG Z Y, et al. Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles[J]. Composites Part A:Applied Science and Manufacturing, 2015, 68:155-163.
[15] LI J L, XIONG Y C, WANG X D, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling[J]. Materials Science and Engineering:A, 2015, 626:400-405.
[16] 农彬艺, 赖灿伟, 刘质彬, 等. 石墨烯增强铝基复合材料的微观结构及力学性能研究[J]. 热加工工艺, 2017, 46(4):144-146. NONG B Y, LAI C W, LIU Z B, et al. Study on microstructure and mechanical properties of graphene reinforced aluminum matrix composite[J]. Hot Working Technology, 2017, 46(4):144-146.
[17] 燕绍九, 杨程, 洪起虎, 等. 石墨烯增强铝基纳米复合材料的研究[J]. 材料工程, 2014(4):1-6. YAN S J, YANG C, HONG Q H, et al. Research of graphene-reinforced aluminum matrix nanocomposites[J]. Journal of Materials Engineering, 2014(4):1-6.
[18] KWON H, MONDAL J, ALOGAB K, et al. Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy[J]. Journal of Alloys and Compounds, 2017, 698:807-813.
[19] KUMAR H G P, XAVIOR M A. Assessment of mechanical and tribological properties of Al2024-SiC-graphene hybrid composites[J]. Procedia Engineering, 2017, 174:992-999.
[20] DAS A. Spark plasma sintering of magnesium matrix composites[M]. Oklahoma City,US:Oklahoma State University, 2012.
[21] BOOSTANI A F, YAZDANI S, MOUSAVIAN R T, et al. Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites[J]. Materials & Design, 2015, 88:983-989.
[22] LIU G, ZHAO N Q, SHI C S, et al. In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites[J]. Materials Science and Engineering:A, 2017,699:185-193.
[23] DU X M, CHEN R Q, LIU F G. Investigation of graphene nanosheets reinforced aluminum matrix composites[J]. Digest Journal of Nanomaterials and Biostructures, 2017, 12(1):37-45.
[24] MU X N, ZHANG H M, CAI H N, et al. Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J]. Materials Science and Engineering:A, 2017, 687:164-174.
[25] LI G, XIONG B. Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites[J]. Journal of Alloys and Compounds, 2017, 697:31-36.
[26] HU Z, CHEN F, XU J, et al. Fabricating graphene-titanium composites by laser sintering PVA bonding graphene titanium coating:microstructure and mechanical properties[J]. Composites Part B:Engineering, 2018, 134:133-140.
[27] 胡增荣, 童国权, 张超, 等. 激光烧结石墨烯钛纳米复合材料及其耐腐蚀性能[J]. 中国表面工程, 2015, 28(6):127-132. HU Z R, TONG G Q, ZHANG C, et al. Corrosion behavior of laser sintered graphene reinforced titanium matrix nanocomposites[J]. China Surface Engineering, 2015, 28(6):127-132.
[28] SABOORI A, PAVESE M, BADINI C, et al. Microstructure and thermal conductivity of Al-graphene composites fabricated by powder metallurgy and hot rolling techniques[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(7):675-687.
[29] SABOORI A, PAVESE M, BADINI C, et al. Effect of sample preparation on the microstructural evaluation of Al-GNPs nanocomposites[J]. Metallography, Microstructure, and Analysis, 2017, 6(6):619-622.
[30] RASHAD M, PAN F, TANG A, et al. Effect of graphene nanoplatelets (GNPs) addition on strength and ductility of magnesium-titanium alloys[J]. Journal of Magnesium and Alloys, 2013, 1(3):242-248.
[31] RASHAD M, PAN F, TANG A, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J]. Progress in Natural Science:Materials International, 2014, 24(2):101-108.
[32] RASHAD M, PAN F, ASIF M, et al. Powder metallurgy of Mg-1%Al-1%Sn alloy reinforced with low content of graphene nanoplatelets (GNPs)[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(6):4250-4255.
[33] RASHAD M, PAN F, TANG A, et al. Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. Journal of Alloys and Compounds, 2014, 603:111-118.
[34] RASHAD M, PAN F, TANG A, et al. Improved strength and ductility of magnesium with addition of aluminum and graphene nanoplatelets (Al+GNPs) using semi powder metallurgy method[J]. Journal of Industrial and Engineering Chemistry, 2015, 23:243-250.
[35] RASHAD M, PAN F, TANG A, et al. Development of magnesium-graphene nanoplatelets composite[J]. Journal of Composite Materials, 2015, 49(3):285-293.
[36] RASHAD M, PAN F, ASIF M, et al. Improved mechanical properties of magnesium-graphene composites with copper-graphene hybrids[J]. Materials Science and Technology, 2015, 31(12):1452-1461.
[37] RASHAD M, PAN F, YU Z, et al. Investigation on microstructural, mechanical and electrochemical properties of aluminum composites reinforced with graphene nanoplatelets[J]. Progress in Natural Science:Materials International, 2015, 25(5):460-470.
[38] SABOORI A, PAVESE M, BADINI C, et al. Development of Al-and Cu-based nanocomposites reinforced by graphene nanoplatelets:fabrication and characterization[J]. Frontiers of Materials Science, 2017, 11(2):171-181.
[39] WANG J, LI Z, FAN G, et al. Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scripta Materialia, 2012, 66(8):594-597.
[40] LI Z, FAN G, TAN Z, et al. Uniform dispersion of graphene oxide in aluminum powder by direct electrostatic adsorption for fabrication of graphene/aluminum composites[J]. Nanotechnology, 2014, 25(32):325601.
[41] LI Z, GUO Q, LI Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Letters, 2015, 15(12):8077-8083.
[42] TIAN W, LI S, WANG B, et al. Graphene-reinforced aluminum matrix composites prepared by spark plasma sintering[J]. International Journal of Minerals, Metallurgy, and Materials, 2016, 23(6):723-729.
[43] BAIG Z, MAMAT O, MUSTAPHA M, et al. Influence of surfactant type on the dispersion state and properties of graphene nanoplatelets reinforced aluminium matrix nanocomposites[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2017, 25(9):545-557.
[44] ASGHARZADEH H, SEDIGH M. Synthesis and mechanical properties of Al matrix composites reinforced with few-layer graphene and graphene oxide[J]. Journal of Alloys and Compounds, 2017, 728:47-62.
[45] JU J M, WANG G, SIM K H. Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties[J]. Journal of Alloys and Compounds, 2017, 704:585-592.
[46] CAO Z, WANG X, LI J, et al. Reinforcement with graphene nanoflakes in titanium matrix composites[J]. Journal of Alloys and Compounds, 2017, 696:498-502.
[47] GAO X, YUE H, GUO E, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites[J]. Materials & Design, 2016, 94:54-60.
[48] LIU J, KHAN U, COLEMAN J, et al. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites:powder synthesis and prepared composite characteristics[J]. Materials & Design, 2016, 94:87-94.
[49] KUMAR S J N, KESHAVAMURTHY R, HASEEBUDDIN M R, et al. Mechanical properties of aluminium-graphene composite synthesized by powder metallurgy and hot extrusion[J]. Transactions of the Indian Institute of Metals, 2017, 70(3):605-613.
[50] BISHT A, SRIVASTAVA M, KUMAR R M, et al. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering[J]. Materials Science and Engineering:A, 2017, 695:20-28.
[51] 燕绍九, 陈翔, 洪起虎, 等. 石墨烯增强铝基纳米复合材料研究进展[J]. 航空材料学报, 2016, 36(3):57-70. YAN S J,CHEN X,HONG Q H,et al. Graphene reinforced aluminum matrix nanocomposites[J]. Journal of Aeronautical Materials, 2016, 36(3):57-70.
[52] GÜRBÜZ M, SENEL M C, KOÇ E. The effect of sintering time, temperature, and graphene addition on the hardness and microstructure of aluminum composites[J]. Journal of Composite Materials,2017,52(4):0021998317740200.
[53] LI D S, YE Y, LIAO X J, et al. A novel method for preparing and characterizing graphene nanoplatelets/aluminum nanocomposites[J]. Nano Research, 2018, 11(3):1642-1650.
[54] YANG W Z, HUANG W M, WANG Z F, et al. Thermal and mechanical properties of graphene-titanium composites synthesized by microwave sintering[J]. Acta Metallurgica Sinica (English Letters), 2016, 29(8):707-713.
[55] KIM Y, LEE J, YEOM M S, et al. Strengthening effect of single-atomic-layer graphene in metal-graphene nanolayered composites[J]. Nature Communications, 2013, 4:2114.
[56] YOLSHINA L A, MURADYMOV R V, KORSUN I V, et al. Novel aluminum-graphene and aluminum-graphite metallic composite materials:synthesis and properties[J]. Journal of Alloys and Compounds, 2016, 663:449-459.
[57] 管仁国, 连超, 赵占勇, 等. 石墨烯铝基复合材料的制备及其性能[J]. 稀有金属材料与工程, 2012,41(增刊2):607-611. GUAN R G, LIAN C, ZHAO Z Y, et al. Study on preparation of graphene and Al-graphene composite[J]. Rare Metal Materials and Engineering, 2012,41(Suppl 2):607-611.
[58] RASHAD M, PAN F, LIU Y, et al. High temperature formability of graphene nanoplatelets-AZ31 composites fabricated by stir-casting method[J]. Journal of Magnesium and Alloys, 2016, 4(4):270-277.
[59] CHEN L Y, KONISHI H, FEHRENBACHER A, et al. Novel nanoprocessing route for bulk graphene nanoplatelets reinforced metal matrix nanocomposites[J]. Scripta Materialia,2012,67(1):29-32.
[60] JEON C H, JEONG Y H, SEO J J, et al. Material properties of graphene/aluminum metal matrix composites fabricated by friction stir processing[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(6):1235-1239.
[61] ZHANG Z Y, ZHU Y, LIANG Y L. Preparation and thermal properties of graphene nanosheet/Ti composites[C]//IOP Conference Series:Materials Science and Engineering. Bristol,UK:IOP Publishing, 2017:012011.
[62] 李文文, 杨丽颖, 王守仁,等. 石墨烯/TiAl基高温自润滑材料的摩擦磨损性能研究[J]. 工具技术, 2017,51(12):36-39. LI W W,YANG L Y,WANG S R,et al. Research on preparation and wear properties of graphene/TiAl based on high temperature self-lubrication material[J]. Tool Engineering, 2017,51(12):36-39.
[63] 王飞, 贾书海, 唐振华, 等. 石墨烯纳米复合材料光驱动技术的研究进展[J]. 材料工程, 2018, 46(4):12-22. WANG F,JIA S H,TANG Z H,et al. Research progress on light-driven technology for graphene-based nanocomposites[J].Journal of Materials Engineering,2018,46(4):12-22.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[3] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[4] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[5] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[6] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[7] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[8] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[9] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[10] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[11] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[12] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[13] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[14] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[15] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn