Please wait a minute...
 
材料工程  2018, Vol. 46 Issue (10): 77-86    DOI: 10.11868/j.issn.1001-4381.2018.000188
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
K465高温合金短时超温后的显微组织退化及拉伸性能
郭小童1, 郑为为1, 肖程波2, 郑运荣1, 冯强1
1. 北京科技大学 新金属材料国家重点实验室, 北京 100083;
2. 中国航发 北京航空材料研究院 先进高温结构材料重点实验室, 北京 100095
Microstructural Degradation and Tensile Properties of K465 Equiaxed-cast Superalloy After Short-time Overheating
GUO Xiao-tong1, ZHENG Wei-wei1, XIAO Cheng-bo2, ZHENG Yun-rong1, FENG Qiang1
1. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;
2. Science and Technology on Advanced High Temperature Structural Materials Laboratory, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
全文: PDF(5539 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 航空发动机涡轮叶片在非正常工况下服役会发生短时超温的现象,导致叶片严重损伤。本工作利用高温拉伸实验设备,对航空发动机涡轮叶片用K465合金在1180~1270℃短时超温条件下的瞬时拉伸性能进行了测试。利用SEM、XRD和物理化学相分析的方法观察和定量表征拉伸前后的显微组织,研究了短时超温过程中显微组织的演变规律及其对拉伸性能的影响。结果表明:随超温温度增加,K465合金中γ'相、碳化物和晶界γ'膜逐步回溶;γ'相形成元素在枝晶间的富集导致枝晶间γ'相完全溶解温度显著高于枝晶干。在1270℃下,晶界与枝晶间残余共晶处发生初熔。合金的屈服强度随着超温温度的增加显著降低,由1000℃时的439MPa急剧下降至1180℃时的85MPa和1240℃时的26MPa。一次γ'相与晶界γ'膜的回溶及初熔是影响拉伸性能的主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭小童
郑为为
肖程波
郑运荣
冯强
关键词 K465合金涡轮叶片超温显微组织拉伸性能    
Abstract:Turbine blades of aircraft engines may suffer serious degradation caused by overheating service exposures. In this paper, microstructure characteristics and tensile properties of K465 alloy, which is an equiaxed cast superalloy and widely used in turbine blades and vanes, were investigated after overheating treatment at 1180~1270℃. The microstructure before and after overheating was also examined and quantitatively characterized using SEM, XRD and physicochemical phase analysis. The relationship between microstructural degradation after overheating and tensile properties was investigated. The results indicate that primary γ' phase, carbides and grain boundaries are gradually dissolved in K465 alloy with increasing the overheating temperature; γ' phase distributed in the interdendritic region has a higher dissolution temperature than that in the dendrite core region due to a higher content of γ' phase forming elements. Incipient melting mainly occurs at the residual eutectic region and grain boundaries at 1270℃. The tensile properties are decreased significantly with increasing the overheating temperature, the yield strength was 439MPa at 1000℃ and dramatically decreased to 85MPa and 26MPa at 1180℃ and 1240℃, respectively. The tensile properties are mainly influenced by the dissolution behaviors of primary γ' phase and γ' film along grain boundaries as well as the influence of incipient melting.
Key wordsK465 alloy    turbine blade    overheating    microstructure    tensile property
收稿日期: 2018-02-22      出版日期: 2018-10-17
中图分类号:  TG132.32  
  TG156.1  
通讯作者: 郑为为(1972-),女,副研究员,博士,主要从事高温合金服役损伤及评价等研究工作,联系地址:北京市海淀区学院路30号北京科技大学新金属材料国家重点实验室(100083),E-mail:zhengww@skl.ustb.edu.cn     E-mail: zhengww@skl.ustb.edu.cn
引用本文:   
郭小童, 郑为为, 肖程波, 郑运荣, 冯强. K465高温合金短时超温后的显微组织退化及拉伸性能[J]. 材料工程, 2018, 46(10): 77-86.
GUO Xiao-tong, ZHENG Wei-wei, XIAO Cheng-bo, ZHENG Yun-rong, FENG Qiang. Microstructural Degradation and Tensile Properties of K465 Equiaxed-cast Superalloy After Short-time Overheating. Journal of Materials Engineering, 2018, 46(10): 77-86.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000188      或      http://jme.biam.ac.cn/CN/Y2018/V46/I10/77
[1] MAZUR Z, LUNA-RAMIREZ A, JUÁREZ-ISLAS J A, et al. Failure analysis of a gas turbine blade made of Inconel 738LC alloy[J]. Engineering Failure Analysis, 2005, 12(3):474-486.
[2] 陶春虎, 钟培道,王仁智,等. 航空发动机转动部件的时效与预防[M]. 北京:国防工业出版社, 2008:64-69. TAO C H, ZHONG P D, WANG R Z, et al. Failure analysis and prevention for rotor in aero-engine[M]. Beijing:National Defense Industry Press, 2008:64-69.
[3] 蔡玉林, 郑运荣. 高温合金的金相研究[M]. 北京:国防工业出版社, 1996:228. CAI Y L, ZHENG Y R. Metallographic research of superalloys[M]. Beijing:National Defence Industry Press, 1996:228.
[4] 李淑媛, 郑运荣. 航空发动机涡轮叶片的超温失效分析[J]. 材料工程, 1983(6):47-49. LI S Y, ZHENG Y R. Failure analysis for an overheated aero-engine turbine blade[J]. Journal of Materials Engineering, 1983(6):47-49.
[5] POKLUDA J, KIANICOVÁ M. Assessment of performance capability of turbine blades with protective coatings after overheating events[J]. Engineering Failure Analysis, 2010, 17:1389-1396.
[6] BLACHNIO J, PAWLAK W I. Damageability of gas turbine blades-evaluation of exhaust gas temperature in front of the turbine using a non-linear observer[M]. Poland:Intech Open Access Publisher, 2011:435-464.
[7] KIM S G, HWANG Y H, KIM T G, et al. Failure analysis of J85 Engine turbine blades[J]. Engineering Failure Analysis, 2008, 15(4):394-400.
[8] ROWE J P, FREEMAN J. Effect of overheating on creept-rupture properties of M252 and Inconel 700 alloys at 1500 and 1600°F:final report to National Aeronautics and Space Administration[R]. Michigan:University of Michigan, 1960:1-63.
[9] ROWE J P, VOORHEES H R, FREEMAN J W. Effect of overheating on the creep-rupture properties of Unimet 500 alloys at 1600°F and 28000psi:final report to the General Electric Company Aircraft Gas Turbine Division[R]. Michigan:University of Michigan, 1957:1-35.
[10] WEISS I, ROSEN A, BRANDON G. Creep of Udimet 500 during thermal cycling:I. the minimum creep rate[J]. Metallurgical Transactions, 1975(6A):761-766.
[11] WEISS I, ROSEN A, BRANDON G. Creep of Udimet 500 during thermal cycling:Ⅱ. the time to failure[J]. Metallurgical Transactions, 1975(6A):767-772.
[12] CORMIER J. Thermal cycling creep resistance of Ni-based single crystal superalloys[C]//Superalloys 2016:Proceedings of the 13th Intenational Symposium of Superalloys. Pennsylvania,USA:TMS (The Minerals, Metals & Materials Society), 2016:383-394.
[13] TONG J Y, DING X F, WANG M L, et al. Evaluation of a serviced turbine blade made of GH4033 wrought superalloy[J]. Materials Science and Engineering:A, 2014, 618:605-613.
[14] 童锦艳, 冯微, 付超, 等. GH4033合金短时超温后的显微组织损伤及力学性能[J]. 金属学报, 2015, 51(10):1242-1252. TONG J Y, FENG W, FU C, et al. Microstructural degradation and mechanical properties of GH4033 alloy after overheating for short time[J]. Acta Metallurgica Sinica, 2015, 51(10):1242-1252.
[15] TONG J Y, DING X, F WANG M L, et al. Assessment of service induced degradation of microstructure and properties in turbine blades made of GH4037 alloy[J]. Journal of Alloys and Compounds, 2016, 657:777-786.
[16] TONG J Y, YAGI K, ZHENG Y R, et al. Microstructural degradation and its corresponding mechanical property of wrought superalloy GH4037 caused by very high temperature[J]. Journal of Alloys and Compounds, 2017, 690:542-552.
[17] 中国金属学会高温材料分会. 中国高温合金手册[M]. 北京:中国标准出版社, 2012:232. Academic Committee of the Superalloys CSM. China superalloys handbook[M]. Beijing:Standards Press of China, 2012:232.
[18] YANG J X, ZHENG Q, SUN X F, et al. Morphological evolution of MC carbide in K465 superalloy[J]. Journal of Materials Science, 2006, 41(19):6476-6478.
[19] YANG J X, ZHENG Q, SUN X F, et al. Morphological evolution of γ' phase in K465 superalloy during prolonged aging[J]. Materials Science and Engineering:A, 2007, 457(1/2):148-155.
[20] 张宏炜, 肖程波, 王定刚, 等. 不同冷却方式对K465合金组织和力学性能的影响[J]. 材料工程, 2002(12):33-35. ZHANG H Y, XIAO C B, WANG D G, et al. Influence of different cooling methods on microstructure and mechanical properties of K465 superalloy[J]. Journal of Materials Engineering, 2002(12):33-35.
[21] PEI Z Y, HAN W, ZHAO G, et al. Effect of cooling rate on microstructure and mechanical properties of K465 superalloy[J]. Journal of Iron and Steel Research, International, 2009, 16:70-74.
[22] 余乾, 肖程波, 宋尽霞, 等. 熔体处理时间对铸态镍基高温合金K465组织和力学性能的影响[J]. 航空材料学报, 2005, 25(1):1-4. YU Q, XIAO C B, SONG J X, et al. Melt treatment time on microstructure and mechanical properties of as-cast Ni-bised superalloy K465[J]. Journal of Aeronautical Materials, 2005, 25(1):1-4.
[23] YUAN X F, SONG J X, ZHENG Y R, et al. Abnormal stress rupture property in K465 superalloy caused by microstructural degradation at 975℃/225MPa[J]. Journal of Alloys and Compounds, 2016, 662:583-592.
[24] YUAN X F, SONG J X, ZHENG Y R, et al. Quantitative microstructural evolution and corresponding stress rupture property of K465 superalloy[J]. Materials Science and Engineering:A, 2016, 651:734-744.
[25] 中国航空材料手册编辑委员会. 中国航空材料手册第2卷[M]. 北京:中国标准出版社, 2002:234-236. Academic Committee of CAM. China aeronautical materials handbook (Ⅱ)[M]. Beijing:Standards Press of China, 2002:234-236.
[26] 赵文侠, 李莹, 范映伟, 等. 涡扇发动机二级转子叶片超温断裂分析[J]. 材料工程, 2012(8):39-44. ZHAO W X, LI Y, FAN Y W, et al. Fracture analysis for second stage rotor turbine blade in aero-engine[J]. Journal of Materials Engineering, 2012(8):39-44.
[27] 郭建亭. 高温合金材料学(上册)[M]. 北京:科学出版社, 2008:363-365. GUO J T. Materials science and engineering for superalloys (I)[M]. Beijing:Science Press, 2008:363-365.
[28] OSADA T, GU Y F, NAGASHIMA N, et al. New quantitative analysis of contributing factors to strength of disk superalloys[C]//Superalloys 2012:Proceedings of the 12th Intenational Symposium of Superalloys. Pennsylvania,USA:TMS (The Minerals, Metals & Materials Society), 2012:121-128.
[29] KOZAR R W, SUZUKI A, MILLIGAN W W, et al. Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys[J]. Metallurgical and Materials Transactions A, 2009, 40(7):1588-1603.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
[3] 石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
[4] 赵辉, 赵菲, 杨长龙, 韩钰, 靳东, 李红英. 时效处理对Al-Zr-Sc(-Er)合金组织和性能的影响[J]. 材料工程, 2020, 48(5): 112-119.
[5] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[6] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[7] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[8] 李国伟, 梁亚红, 陈芙蓉, 韩永全. 7075铝合金脉冲变极性等离子弧焊接头的双级时效行为[J]. 材料工程, 2020, 48(2): 140-147.
[9] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[10] 唐鹏钧, 房立家, 杨斌, 陈冰清, 李沛勇, 张学军. 激光选区熔化AlSi7MgTi合金显微组织与性能[J]. 材料工程, 2020, 48(11): 116-123.
[11] 宋立奇, 史运嘉, 蔡彬, 叶大萌, 李梦佳, 连娟. 激光选区熔化成形制备高强Al-Mg-Sc合金的组织与性能[J]. 材料工程, 2020, 48(11): 124-130.
[12] 徐昀华, 张春华, 张松, 乔瑞庆, 张静波. 激光增材制造24CrNiMo合金钢显微组织特征[J]. 材料工程, 2020, 48(11): 147-154.
[13] 秦健朝, 崔仁杰, 黄朝晖. 小角度晶界对DD5镍基单晶高温合金中、高温条件下力学性能的影响[J]. 材料工程, 2020, 48(10): 114-122.
[14] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[15] 罗亮, 肖程波, 陈晶阳, 李青, 戴圣龙. 工业燃气轮机涡轮叶片用铸造高温合金研究及应用进展[J]. 材料工程, 2019, 47(6): 34-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn