Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (4): 64-70    DOI: 10.11868/j.issn.1001-4381.2018.000208
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究
卢子龙, 安立宝, 刘扬
华北理工大学 机械工程学院, 河北 唐山 063210
First principles study of adsorption of multilayer gold atoms on graphene doped with B under various concentrations
LU Zi-long, AN Li-bao, LIU Yang
College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
全文: PDF(3463 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯与金属间过高的接触电阻严重影响了其在微纳电子领域的应用,B掺杂可以有效降低石墨烯的接触电阻。利用第一性原理研究了不同浓度B掺杂对石墨烯吸附多层Au原子的影响。首先计算了不同浓度B掺杂石墨烯的结合能,验证了掺杂石墨烯的稳定性;然后对掺杂石墨烯进行了结构优化并在其表面置入多层Au原子,计算了吸附模型的吸附能、赝能隙、局部态密度、电荷密度分布和电荷转移量。B掺杂浓度分别为1.39%,4.17%,6.94%,9.72%,12.50%和15.28%。结果表明:随着B掺杂浓度的提高,石墨烯吸附多层Au原子体系的赝能隙变宽,吸附能增加,结构稳定性得到提升;B原子与Au原子间杂化作用明显,具有较高的电荷密度和电荷转移量,可有效地降低石墨烯与多层Au原子间的接触电阻;但掺杂浓度为15.28%时,由于浓度过高吸附模型中石墨烯几何结构变形过大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢子龙
安立宝
刘扬
关键词 石墨烯B掺杂Au吸附第一性原理接触电阻    
Abstract:The high contact resistance between graphene and metal retards the application of graphene in micro-and nano-electronics. Boron (B) doping can effectively reduce the contact resistance of graphene. The influence of dopant concentration on the adsorption of multilayer gold (Au) atoms on B-doped graphene was studied using the first principles theory. Firstly, the binding energy of B-doped graphene with various B concentrations was calculated, and the stability of each B-doped graphene was verified. Then, after structural optimization of B-doped graphene, multilayer Au atoms were introduced into graphene and the adsorption energy, pseudogap, local density of state, charge density distribution, and charge transfer of the adsorption system were analyzed. The B concentrations considered were respectively 1.39%,4.17%,6.94%,9.72%,12.50% and 15.28%. The results show that as B concentration increases, the pseudogap of the adsorption system becomes wider and the adsorption energy rises, leading to a more stable adsorption system. Also, an obvious hybridization between B and Au atoms takes place. This elevates the charge density and promotes the charge transfer at the interface of graphene and Au, which can help reduce the contact resistance between them. However, when the concentration reaches 15.28%, the geometric deformation of graphene becomes intolerable due to a high doping concentration.
Key wordsgraphene    B-doping    Au adsorption    first principle    contact resistance
收稿日期: 2018-03-01      出版日期: 2019-04-19
中图分类号:  TB333  
通讯作者: 安立宝(1965-),男,教授,研究方向:微纳制造技术,先进纳米材料制备、特性及应用,联系地址:河北省唐山市曹妃甸新城渤海大道21号华北理工大学机械工程学院(063210),E-mail:lan@ncst.edu.cn     E-mail: lan@ncst.edu.cn
引用本文:   
卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
LU Zi-long, AN Li-bao, LIU Yang. First principles study of adsorption of multilayer gold atoms on graphene doped with B under various concentrations. Journal of Materials Engineering, 2019, 47(4): 64-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000208      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/64
[1] AKINWANDE D,PETRONE N,HONE J.Two-dimensional fle-xible nanoelectronics[J].Nature Communications,2014,5:5678-1-5678-12.
[2] NOVOSELOV K S,FAL'KO V I,COLOMBO L,et al.A roadmap for graphene[J].Nature,2012,490(7419):192-200.
[3] NEMEC N,TOMNEK D,CUMIBERTI G.Contact dependence of carrier injection in carbon nanotubes:an ab initio study[J].Physi-cal Review Letters,2006,96(7):076802-1.
[4] 刁加加,常春蕊,张志明,等.金掺杂降低碳纳米管接触电阻的实验研究[J].材料研究学报,2017,31(7):511-516. DIAO J J,CHANG C R,ZHANG Z M,et al.Reducing contact resistance of carbon nanotubes by Au doping[J].Chinese Journal Of Materials Research,2017,31(7):511-516.
[5] ASAKA K,KARITA M,SAITO Y.Modification of interface structure and contact resistance between a carbon nanotube and a gold electrode by local melting[J].Applied Surface Science,2011,257(7):2850-2853.
[6] KOM K K,BAE J J,PARK H K,et al.Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping[J].Journal of the American Chemical Society,2008,130(38):12757-12761.
[7] SONG X.Study on mechanism of carbon nanotube/metal inter-facial bonding and related technology[D].Shanghai:Shanghai Jiao Tong University,2010.
[8] KONG B S,JUNG D H,OH S K,et al.Single-walled carbon nanotube gold nanohybrids:application in highly effective transp-arent and conductive films[J].The Journal of Physical Chemistry C,2007,111(23):8377-8382.
[9] YEH M H,LI Y S,CHEN G L,et al.Facile synthesis of boron-doped graphene nanosheets with hierarchical microstructure at atmosphere pressure for metal-free electrochemical detection of hydrogen peroxide[J].Electrochimica Acta,2015,172:52-60.
[10] PULLAMSETTY A,SUBBIAH M,SUNDARA R.Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells[J].International Journal of Hy-drogen Energy,2015,40(32):10251-10261.
[11] CHEN X,YANG G,FENG S,et al.Au@Au Pt nanoparticles embedded in B-doped graphene:a superior electrocatalyst for determination of rutin[J].Applied Surface Science,2017,402:232-244.
[12] GAHOI A,WAGNER S,BABLICH A,et al.Contact resistance study of various metal electrodes with CVD graphene[J].Solid-State Electronics,2016,125:234-239.
[13] LIU Z,ZHANG Y,WANG B,et al.DFT study on Al-doped defective graphene towards adsorption of elemental mercury[J].Applied Surface Science,2017,427:547-553.
[14] PERDEW J P,CHEVARY J A,VOSKO S H,et al.Atoms,molecules,solids,and surfaces:applications of the generalized gradient approximation for exchange and correlation[J].Physical Review B:Condensed Matter,1992,46(11):6671-6687.
[15] PERDEW J P,BURKE K,EMZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.
[16] 代利峰,刘涛,龚亮,等.Fe掺杂碳纳米管吸附Al原子的第一性原理研究[J].中国有色金属学报,2017,27(6):1182-1188. DAI L F,LIU T,GONG L,et al,First principles study of adsorption of Al atoms on Fe doped carbon nanotubes[J].The Chinese Journal of Nonferrous Metals,2017,27(6):1182-1188.
[17] PENG M M,LAI W S.Interaction between vacancies and the α-Fe/Y2O3 interface:a first-principles study[J].Nuclear Instru-ments & Methods in Physics Research,2015,352:67-71.
[18] ZHANG Y,SUN R,LUO B,et al.Boron-doped graphene as high-performance electrocatalyst for the simultaneously electro-chemical determination of hydroquinone and catechol[J].Electro-chimica Acta,2015,156:228-234.
[19] 王欣,王发展,雷哲锋,等.N-M (Cd,Mg)共掺闭口氧化锌纳米管场发射第一性原理研究[J].物理学报,2013,62(12):123101-1-123101-6. WANG X,WANG F Z,LEI Z F.et al.First-principles study of field emission properties for ZnO nanotuber capped and codoped[J].Acta Physica Sinica,2013,62(12):123101-1-123101-6.
[20] WANG K P,SHI C S,ZHAO N Q,et al.First-principle study of the effect of boron (nitrogen)-doping on adsorbing character-istics of aluminum on single-walled carbon nanotubes[J].Acta Physica Sinica,2008,57(12):7833-7840.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[3] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[4] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[5] 李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
[6] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[7] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
[8] 赵双赞, 燕绍九, 陈翔, 洪起虎, 李秀辉, 戴圣龙. 石墨烯纳米片增强铝基复合材料的动态力学行为[J]. 材料工程, 2019, 47(3): 23-29.
[9] 余煜玺, 夏范森, 黄奇凡. 石墨烯改性PDC-SiCNO陶瓷的制备及其介电性能[J]. 材料工程, 2019, 47(3): 8-14.
[10] 杨宇凯, 张宝, 王旭东, 张虎生, 武岳, 关永军. 石墨烯及碳化硅增强铝基复合材料的冲击力学行为[J]. 材料工程, 2019, 47(3): 15-22.
[11] 董雪, 马爽, 武晓霞, 那日苏. Fe52T2(T=Cr,Mn,Co,Ni)合金bcc与fcc相结构的第一性原理研究[J]. 材料工程, 2019, 47(3): 147-153.
[12] 张丹丹, 沈洪雷, 曹霞, 叶煜松, 张啸, 叶历, 王梦秋. 石墨烯增强金属基航空复合材料研究进展[J]. 材料工程, 2019, 47(1): 1-10.
[13] 李秀辉, 燕绍九, 洪起虎, 赵双赞, 陈翔. 石墨烯添加量对铜基复合材料性能的影响[J]. 材料工程, 2019, 47(1): 11-17.
[14] 孟祥龙, 衣明东, 肖光春, 陈照强, 许崇海. 石墨烯纳米片增韧Al2O3基纳米复合陶瓷刀具材料[J]. 材料工程, 2019, 47(1): 25-31.
[15] 周铁路, 刘会娥, 陈爽, 丁传芹, 齐选良. 诱导助剂对石墨烯负载的TiO2颗粒分布、结构和光催化活性的影响[J]. 材料工程, 2018, 46(8): 43-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn