Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (4): 64-70    DOI: 10.11868/j.issn.1001-4381.2018.000208
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究
卢子龙, 安立宝, 刘扬
华北理工大学 机械工程学院, 河北 唐山 063210
First principles study of adsorption of multilayer gold atoms on graphene doped with B under various concentrations
LU Zi-long, AN Li-bao, LIU Yang
College of Mechanical Engineering, North China University of Science and Technology, Tangshan 063210, Hebei, China
全文: PDF(3463 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 石墨烯与金属间过高的接触电阻严重影响了其在微纳电子领域的应用,B掺杂可以有效降低石墨烯的接触电阻。利用第一性原理研究了不同浓度B掺杂对石墨烯吸附多层Au原子的影响。首先计算了不同浓度B掺杂石墨烯的结合能,验证了掺杂石墨烯的稳定性;然后对掺杂石墨烯进行了结构优化并在其表面置入多层Au原子,计算了吸附模型的吸附能、赝能隙、局部态密度、电荷密度分布和电荷转移量。B掺杂浓度分别为1.39%,4.17%,6.94%,9.72%,12.50%和15.28%。结果表明:随着B掺杂浓度的提高,石墨烯吸附多层Au原子体系的赝能隙变宽,吸附能增加,结构稳定性得到提升;B原子与Au原子间杂化作用明显,具有较高的电荷密度和电荷转移量,可有效地降低石墨烯与多层Au原子间的接触电阻;但掺杂浓度为15.28%时,由于浓度过高吸附模型中石墨烯几何结构变形过大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢子龙
安立宝
刘扬
关键词 石墨烯B掺杂Au吸附第一性原理接触电阻    
Abstract:The high contact resistance between graphene and metal retards the application of graphene in micro-and nano-electronics. Boron (B) doping can effectively reduce the contact resistance of graphene. The influence of dopant concentration on the adsorption of multilayer gold (Au) atoms on B-doped graphene was studied using the first principles theory. Firstly, the binding energy of B-doped graphene with various B concentrations was calculated, and the stability of each B-doped graphene was verified. Then, after structural optimization of B-doped graphene, multilayer Au atoms were introduced into graphene and the adsorption energy, pseudogap, local density of state, charge density distribution, and charge transfer of the adsorption system were analyzed. The B concentrations considered were respectively 1.39%,4.17%,6.94%,9.72%,12.50% and 15.28%. The results show that as B concentration increases, the pseudogap of the adsorption system becomes wider and the adsorption energy rises, leading to a more stable adsorption system. Also, an obvious hybridization between B and Au atoms takes place. This elevates the charge density and promotes the charge transfer at the interface of graphene and Au, which can help reduce the contact resistance between them. However, when the concentration reaches 15.28%, the geometric deformation of graphene becomes intolerable due to a high doping concentration.
Key wordsgraphene    B-doping    Au adsorption    first principle    contact resistance
收稿日期: 2018-03-01      出版日期: 2019-04-19
中图分类号:  TB333  
通讯作者: 安立宝(1965-),男,教授,研究方向:微纳制造技术,先进纳米材料制备、特性及应用,联系地址:河北省唐山市曹妃甸新城渤海大道21号华北理工大学机械工程学院(063210),E-mail:lan@ncst.edu.cn     E-mail: lan@ncst.edu.cn
引用本文:   
卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
LU Zi-long, AN Li-bao, LIU Yang. First principles study of adsorption of multilayer gold atoms on graphene doped with B under various concentrations. Journal of Materials Engineering, 2019, 47(4): 64-70.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000208      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/64
[1] AKINWANDE D,PETRONE N,HONE J.Two-dimensional fle-xible nanoelectronics[J].Nature Communications,2014,5:5678-1-5678-12.
[2] NOVOSELOV K S,FAL'KO V I,COLOMBO L,et al.A roadmap for graphene[J].Nature,2012,490(7419):192-200.
[3] NEMEC N,TOMNEK D,CUMIBERTI G.Contact dependence of carrier injection in carbon nanotubes:an ab initio study[J].Physi-cal Review Letters,2006,96(7):076802-1.
[4] 刁加加,常春蕊,张志明,等.金掺杂降低碳纳米管接触电阻的实验研究[J].材料研究学报,2017,31(7):511-516. DIAO J J,CHANG C R,ZHANG Z M,et al.Reducing contact resistance of carbon nanotubes by Au doping[J].Chinese Journal Of Materials Research,2017,31(7):511-516.
[5] ASAKA K,KARITA M,SAITO Y.Modification of interface structure and contact resistance between a carbon nanotube and a gold electrode by local melting[J].Applied Surface Science,2011,257(7):2850-2853.
[6] KOM K K,BAE J J,PARK H K,et al.Fermi level engineering of single-walled carbon nanotubes by AuCl3 doping[J].Journal of the American Chemical Society,2008,130(38):12757-12761.
[7] SONG X.Study on mechanism of carbon nanotube/metal inter-facial bonding and related technology[D].Shanghai:Shanghai Jiao Tong University,2010.
[8] KONG B S,JUNG D H,OH S K,et al.Single-walled carbon nanotube gold nanohybrids:application in highly effective transp-arent and conductive films[J].The Journal of Physical Chemistry C,2007,111(23):8377-8382.
[9] YEH M H,LI Y S,CHEN G L,et al.Facile synthesis of boron-doped graphene nanosheets with hierarchical microstructure at atmosphere pressure for metal-free electrochemical detection of hydrogen peroxide[J].Electrochimica Acta,2015,172:52-60.
[10] PULLAMSETTY A,SUBBIAH M,SUNDARA R.Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells[J].International Journal of Hy-drogen Energy,2015,40(32):10251-10261.
[11] CHEN X,YANG G,FENG S,et al.Au@Au Pt nanoparticles embedded in B-doped graphene:a superior electrocatalyst for determination of rutin[J].Applied Surface Science,2017,402:232-244.
[12] GAHOI A,WAGNER S,BABLICH A,et al.Contact resistance study of various metal electrodes with CVD graphene[J].Solid-State Electronics,2016,125:234-239.
[13] LIU Z,ZHANG Y,WANG B,et al.DFT study on Al-doped defective graphene towards adsorption of elemental mercury[J].Applied Surface Science,2017,427:547-553.
[14] PERDEW J P,CHEVARY J A,VOSKO S H,et al.Atoms,molecules,solids,and surfaces:applications of the generalized gradient approximation for exchange and correlation[J].Physical Review B:Condensed Matter,1992,46(11):6671-6687.
[15] PERDEW J P,BURKE K,EMZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters,1996,77(18):3865-3868.
[16] 代利峰,刘涛,龚亮,等.Fe掺杂碳纳米管吸附Al原子的第一性原理研究[J].中国有色金属学报,2017,27(6):1182-1188. DAI L F,LIU T,GONG L,et al,First principles study of adsorption of Al atoms on Fe doped carbon nanotubes[J].The Chinese Journal of Nonferrous Metals,2017,27(6):1182-1188.
[17] PENG M M,LAI W S.Interaction between vacancies and the α-Fe/Y2O3 interface:a first-principles study[J].Nuclear Instru-ments & Methods in Physics Research,2015,352:67-71.
[18] ZHANG Y,SUN R,LUO B,et al.Boron-doped graphene as high-performance electrocatalyst for the simultaneously electro-chemical determination of hydroquinone and catechol[J].Electro-chimica Acta,2015,156:228-234.
[19] 王欣,王发展,雷哲锋,等.N-M (Cd,Mg)共掺闭口氧化锌纳米管场发射第一性原理研究[J].物理学报,2013,62(12):123101-1-123101-6. WANG X,WANG F Z,LEI Z F.et al.First-principles study of field emission properties for ZnO nanotuber capped and codoped[J].Acta Physica Sinica,2013,62(12):123101-1-123101-6.
[20] WANG K P,SHI C S,ZHAO N Q,et al.First-principle study of the effect of boron (nitrogen)-doping on adsorbing character-istics of aluminum on single-walled carbon nanotubes[J].Acta Physica Sinica,2008,57(12):7833-7840.
[1] 高亚辉, 尹国杰, 张少文, 王璐, 孟巧静, 李欣栋. 电化学法制备石墨烯的研究进展[J]. 材料工程, 2020, 48(8): 84-100.
[2] 钱伟, 何大平, 李宝文. 石墨烯基电磁屏蔽材料的研究进展[J]. 材料工程, 2020, 48(7): 14-23.
[3] 李娜, 张儒静, 甄真, 许振华, 何利民. 等离子体增强化学气相沉积可控制备石墨烯研究进展[J]. 材料工程, 2020, 48(7): 36-44.
[4] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[5] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[6] 杨程, 时双强, 郝思嘉, 褚海荣, 戴圣龙. 石墨烯光催化材料及其在环境净化领域的研究进展[J]. 材料工程, 2020, 48(7): 1-13.
[7] 张传香, 陈亚玲, 巩云, 刘慧颖, 戴玉明, 丛园. 二硫化钼/石墨烯复合材料的一步水热合成及电催化性能[J]. 材料工程, 2020, 48(5): 56-61.
[8] 李英民, 马鸣檀, 任玉艳, 刘桐宇. 稀土La掺杂Mg2Si的几何结构、弹性性能和电子结构的第一性原理研究[J]. 材料工程, 2020, 48(4): 100-107.
[9] 白明洁, 刘金龙, 齐志娜, 何江, 魏俊俊, 苗建印, 李成明. 石墨烯纳米流体研究进展[J]. 材料工程, 2020, 48(4): 46-59.
[10] 谢红梅, 蒋斌, 戴甲洪, 唐昌平, 李权, 潘复生. 石墨烯和氧化石墨烯水基润滑添加剂在镁合金冷轧中的摩擦学行为[J]. 材料工程, 2020, 48(3): 66-74.
[11] 陈乐, 董丽敏, 金鑫鑫, 付海洋, 李晓约. Y掺杂Mn3O4/石墨烯复合材料的电化学性能[J]. 材料工程, 2020, 48(2): 53-58.
[12] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[13] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[14] 刘香军, 杨吉春, 贾桂霄, 杨昌桥, 蔡长焜. 金属元素掺杂α-Fe(N)体系的电子结构及力学性能的第一性原理计算[J]. 材料工程, 2019, 47(9): 72-77.
[15] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn