Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (1): 131-138    DOI: 10.11868/j.issn.1001-4381.2018.000260
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
2D-C/SiC复合材料面内剪切性能统计及强度B基准值
王波1,*(), 吴亚波2, 黄喜鹏2, 潘文革2, 成来飞3
1 西北工业大学 航空学院, 西安 710072
2 西北工业大学 力学与土木建筑学院, 西安 710072
3 西北工业大学 材料学院, 西安 710072
In-plane shear performance statistics of 2D-C/SiC composites and its B-basis value of strength
Bo WANG1,*(), Ya-bo WU2, Xi-peng HUANG2, Wen-ge PAN2, Lai-fei CHENG3
1 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
2 School of Mechanics, Civil and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
3 School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
全文: PDF(10075 KB)   HTML ( 12 )  
输出: BibTeX | EndNote (RIS)      
摘要 

针对2D-C/SiC复合材料进行大子样面内剪切实验,研究材料面内剪切模量和强度的分布规律及强度B基准值。运用线性回归结合假设检验的方法,确定2D-C/SiC复合材料面内剪切力学性能的分布规律及参数,对比两种不同经验失效概率得到统计结果;通过观察试样最窄净截面微CT照片及断口电镜扫描照片,解释材料面内剪切强度分散性微观机制,基于分布规律,最终计算得到2D-C/SiC复合材料面内剪切强度威布尔B基准值。结果表明:强度和模量均同时服从威布尔、正态和对数正态分布,且理论模型与实验结果吻合良好,两种经验失效概率不影响力学性能分布规律;面内剪切强度分散性与最窄净截面致密度和界面脱粘长度有关;2D-C/SiC复合材料面内剪切强度威布尔B基准值为80.41MPa。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王波
吴亚波
黄喜鹏
潘文革
成来飞
关键词 2D-C/SiC复合材料面内剪切经验失效概率性能统计B基准值    
Abstract

The distribution of in-plane shear modulus and strength of 2D-C/SiC composites, and its B-basis value of strength were studied by testing thirty Iosipescu specimens under shear load. The distribution and parameters about in-plane shear properties of 2D-C/SiC composites were determined by the method that liner regression combined with hypothesis testing, and the statistics results obtained by two different empirical failure probabilities were compared. The mechanism of the dispersibility of the in-plane shear strength was demonstrated by the micro-CT(μ-CT)photographs and SEM(scanning electron microscope) photographs through observation on the narrowest net cross-section. Finally, the Weibull B-basis value of the strength was calculated based on the distribution law. The results show that the strength and modulus of 2D-C/SiC composites both follow weibull, normal and lognormal distribution, and the prediction has good agreement with test data. The distribution of the mechanical properties is not affected by two empirical failure probabilities. The dispersibility of the strength is connected with the density of the narrowest net cross-section and the interface debonding length. Finally, its B-basis value of strength is 80.41MPa.

Key words2D-C/SiC composite    in-plane shear    empirical failure probability    performance statistics    B-basis value
收稿日期: 2018-03-18      出版日期: 2019-01-16
中图分类号:  O34  
  TB332  
基金资助:西北工业大学超高温结构复合材料国防重点实验室创新基金(6142911050116)
通讯作者: 王波     E-mail: b.wang@nwpu.edu.cn
作者简介: 王波(1976-), 男, 博士, 副教授, 主要从事复合材料及其结构的力学行为研究, 联系地址:陕西省西安市友谊西路127号西北工业大学118信箱(710072), E-mail:b.wang@nwpu.edu.cn
引用本文:   
王波, 吴亚波, 黄喜鹏, 潘文革, 成来飞. 2D-C/SiC复合材料面内剪切性能统计及强度B基准值[J]. 材料工程, 2019, 47(1): 131-138.
Bo WANG, Ya-bo WU, Xi-peng HUANG, Wen-ge PAN, Lai-fei CHENG. In-plane shear performance statistics of 2D-C/SiC composites and its B-basis value of strength. Journal of Materials Engineering, 2019, 47(1): 131-138.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000260      或      http://jme.biam.ac.cn/CN/Y2019/V47/I1/131
Fig.1  面内剪切试件
Fig.2  试件断口
Fig.3  典型剪切应力-应变曲线
Property Strength/MPa Modulus/GPa
Mean value 95.33 33.40
Stdev 7.28 4.36
MNR 1.7349 2.0871
Table 1  面内剪切性能统计及异常数据筛选结果
Distribution X Y A B
Weibull lnx ln[ln(1/(1-F(x)))] -β lnα β
Normal x Φ-1(F(x)) -(μ/σ) 1/σ
Lognormal lnx Φ-1(F(x)) -(μ/σ) 1/σ
Table 2  3种分布的线性回归变换关系
Fig.4  线性回归分析结果
(a)Weibull分布;(b)正态分布;(c)对数正态分布
Parameter Strength/MPa Modulus/GPa
Weibull Normal Lognormal Weibull Normal Lognormal
or S1 98.62 95.41 4.56 40.02 37.85 3.63
S2 98.64 95.11 4.55 40.26 37.88 3.63
Error/% 0.02 0.31 0.22 0.60 0.08 0
or S1 15.56 7.52 0.079 9.11 5.10 0.136
S2 14.96 7.75 0.081 8.73 5.29 0.141
Error/% 3.86 3.06 2.53 4.17 3.73 3.68
Table 3  不同分布的参数估计结果
Strength/MPa S1 SW Dn
92.4 0.4500 0.3043 0.1457
Table 4  Kolmogorov检验计算和结果
Property S1 S2
Weibull Normal Lognormal Weibull Normal Lognormal
Strength 0.1457 0.1099 0.1227 0.1371 0.0930 0.0960
Modulus 0.0891 0.0814 0.0775 0.0990 0.0740 0.0720
Table 5  Dn的计算结果
Fig.5  理论概率-经验概率拟合图
(a)强度经验概率S1;(b)强度经验概率S2;(c)模量经验概率S1;(d)模量经验概率S2
Property Weibull Normal Lognormal
S1 S2 S1 S2 S1 S2
Strength/MPa 95.34 95.26 95.41 95.11 95.88 94.94
Modulus/GPa 37.92 38.07 37.85 37.88 38.06 38.09
Table 6  理论模型预测均值结果
Fig.6  Weibull分布概率密度曲线
Fig.7  试件横截面微CT扫描照片
(a)84.9MPa;(b)92.1MPa;(c)98.7MPa;(d)106.6MPa
Fig.8  界面脱粘长度SEM照片
(a)84.9MPa;(b)92.1MPa;(c)98.7MPa;(d)106.6MPa
1 NASLAIN R , GUETTE A , REBILLATE F , et al. Boron-bearing species in ceramic matrix composites for long-term aerospace applications[J]. Journal of Solid State Chemistry, 2004, 177 (2): 449- 456.
doi: 10.1016/j.jssc.2003.03.005
2 NASLAIN R . Design, preparation and properties of non-oxide CMCs for application in engines and nuclear reactors:an overview[J]. Composites Science and Technology, 2004, 64 (2): 155- 170.
doi: 10.1016/S0266-3538(03)00230-6
3 严科飞, 张程煜, 乔生儒, 等. C/C复合材料室温面内剪切强度分布[J]. 机械强度, 2012, 34 (6): 912- 915.
3 YAN K F , ZHANG C Y , QIAO S R , et al. Statistical distribution on in-plane shear strength of C/C composite at room temperature[J]. Journal of Mechanical Strength, 2012, 34 (6): 912- 915.
4 李辉, 张立同, 曾庆丰, 等. 2D C/SiC复合材料的可靠性评价[J]. 复合材料学报, 2007, 24 (4): 95- 100.
doi: 10.3321/j.issn:1000-3851.2007.04.017
4 LI H , ZHANG L T , ZENG Q F , et al. Reliability analysis of 2D-C/SiC composite[J]. Acta Materiae Compositae Sinica, 2007, 24 (4): 95- 100.
doi: 10.3321/j.issn:1000-3851.2007.04.017
5 童小燕, 张凯, 姚磊江, 等. 2D C/SiC复合材料蠕变寿命分布规律研究[J]. 机械强度, 2013, 35 (6): 823- 828.
5 TONG X Y , ZHANG K , YAO L J , et al. Investigation for creep life distribution of 2D C/SiC composites[J]. Journal of Mechanical Strength, 2013, 35 (6): 823- 828.
6 吴守军, 成来飞, 董宁, 等. 3D Hi-Nicalon/SiC复合材料室温三点弯曲强度分布[J]. 复合材料学报, 2005, 22 (5): 130- 133.
doi: 10.3321/j.issn:1000-3851.2005.05.021
6 WU S J , CHENG L F , DONG N , et al. Flexural strength distribution of 3D Hi Nicalon/SiC in three point bending test at room temperature[J]. Acta Materiae Compositae Sinica, 2005, 22 (5): 130- 133.
doi: 10.3321/j.issn:1000-3851.2005.05.021
7 LIU Y , CHENG L , ZHANG L , et al. Fracture behavior and mechanism of 2D C/SiC-BCx composite at room temperature[J]. Materials Science and Engineering:A, 2011, 528 (3): 1436- 1441.
doi: 10.1016/j.msea.2010.10.045
8 LIU Y , CHAI N , QIN H , et al. Tensile fracture behavior and strength distribution of SiCf/SiC composites with different SiBN interface thicknesses[J]. Ceramics International, 2015, 41 (1): 1609- 1616.
doi: 10.1016/j.ceramint.2014.09.098
9 PITT R E , PHOENIX S L . Probability distributions for the strength of composite materials IV:localized load-sharing with tapering[J]. International Journal of Fracture, 1983, 22 (4): 243- 276.
doi: 10.1007/BF01140156
10 CALARD V , LAMON J . A probabilistic-statistical approach to the ultimate failure of ceramic-matrix composites-part Ⅰ:experimental investigation of 2D woven SiC/SiC composites[J]. Composites Science & Technology, 2002, 62 (3): 385- 393.
11 CALARD V , LAMON J . A probabilistic statistical approach to the ultimate failure of ceramic-matrix composites-part Ⅱ:macroscopic model[J]. Composites Science & Technology, 2002, 62 (3): 395- 399.
12 GENET M , COUEGNAT G . Scaling strength distributions in quasi-brittle materials from micro-to macro-scales:a computational approach to modeling nature-inspired structural ceramics[J]. Journal of the Mechanics and Physics of Solids, 2014, 68 (1): 93- 106.
13 RICHTER H , PETERS P W M . Tensile strength distribution of all-oxide ceramic matrix mini-composites with porous alumina matrix phase[J]. Journal of the European Ceramic Society, 2016, 13 (36): 3185- 3191.
14 马鑫, 关志东, 薛斌, 等. 复合材料B基准值计算程序[J]. 制造业自动化, 2011, 33 (21): 83- 87.
doi: 10.3969/j.issn.1009-0134.2011.11(s).23
14 MA X , GUAN Z D , XUE B , et al. Programming of B-basis value calculation of composite[J]. Manufacturing Automation, 2011, 33 (21): 83- 87.
doi: 10.3969/j.issn.1009-0134.2011.11(s).23
15 董本正, 李伟, 高丽红, 等. 基于Matlab的碳纤维复合材料的B基准值算法[J]. 现代电子技术, 2014, (16): 87- 91.
doi: 10.3969/j.issn.1004-373X.2014.16.026
15 DONG B Z , LI W , GAO L H , et al. Matlab-based algorithm for B reference value of carbon fiber reinforced polymer[J]. Modern Electronics Technique, 2014, (16): 87- 91.
doi: 10.3969/j.issn.1004-373X.2014.16.026
16 王翔, 陈新文, 王海鹏, 等. 基于统计的复合材料B基准值计算方法研究[J]. 失效分析, 2010, 5 (4): 210- 215.
doi: 10.3969/j.issn.1673-6214.2010.04.004
16 WANG X , CHEN X W , WANG H P , et al. Statistic-based calculation methods of B-basis value of composite[J]. Failure analysis and Prevention, 2010, 5 (4): 210- 215.
doi: 10.3969/j.issn.1673-6214.2010.04.004
17 刘新, 王荣国, 刘文博, 等. 三角形截面碳纤维复合材料弯曲强度B基准值[J]. 宇航学报, 2010, 31 (6): 1651- 1655.
doi: 10.3873/j.issn.1000-1328.2010.06.023
17 LIU X , WANG R G , LIU W B , et al. The B-basis value of the flexural strength of triangle-shape carbon fibers reinforced plastics[J]. Journal of Astronautics, 2010, 31 (6): 1651- 1655.
doi: 10.3873/j.issn.1000-1328.2010.06.023
18 管国阳, 矫桂琼, 张增光. 平纹编织C/SiC复合材料的剪切性能[J]. 机械科学与技术, 2005, 24 (5): 515- 517.
doi: 10.3321/j.issn:1003-8728.2005.05.003
18 GUAN G Y , JIAO G Q , ZHANG Z G . In-plane shear fracture characteristic of plain woven C/SiC composite[J]. Mechanical Science and Technology, 2005, 24 (5): 515- 517.
doi: 10.3321/j.issn:1003-8728.2005.05.003
19 赵永翔, 孙亚芳, 高庆. 分析常用7种统计分布的统一线性回归方法[J]. 机械强度, 2001, 23 (1): 102- 106.
doi: 10.3321/j.issn:1001-9669.2001.01.028
19 ZHAO Y X , SUN Y F , GAO Q . Unified linear regression method for the analysis of seven commonly used statistical distributions[J]. Journal of Mechanical Strength, 2001, 23 (1): 102- 106.
doi: 10.3321/j.issn:1001-9669.2001.01.028
20 YAN K F, ZHANG C Y, QIAO S R, et al. In-plane shear strength of a carbon/carbon composite at different loading rates and temperatures[J].2011, 528(3): 1458-1462.
[1] 郭洪宝, 洪智亮, 李开元, 梅文斌. 2D-C/SiC复合材料轴向加载泊松效应[J]. 材料工程, 2021, 49(8): 178-183.
[2] 王波, 吴亚波, 郭洪宝, 贾普荣, 李俊. 2D-C/SiC复合材料偏轴拉伸力学行为研究[J]. 材料工程, 2017, 45(7): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn