Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (4): 71-76    DOI: 10.11868/j.issn.1001-4381.2018.000342
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能
李芹1, 盛利成1, 董丽敏1, 张彦飞2, 金立国1
1. 哈尔滨理工大学 材料科学与工程学院, 哈尔滨 150040;
2. 中国航发哈尔滨东安发动机有限公司, 哈尔滨 150066
Preparation and electrochemical properties of ZnCo2O4 and ZnCo2O4/rGO composites
LI Qin1, SHENG Li-cheng1, DONG Li-min1, ZHANG Yan-fei2, JIN Li-guo1
1. School of Material Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China;
2. AECC Harbin Dongan Engine Co., Ltd., Harbin 150066, China
全文: PDF(5201 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用一步水热法制备尖晶石型钴酸锌(ZnCo2O4)及钴酸锌/石墨烯(ZnCo2O4/rGO)复合材料,通过XRD,SEM和RST5000电化学工作站对材料的组分、表面形貌及电化学性能进行表征。通过改变水热温度,制备出具有辐射状花簇团结构、褶皱片层结构和表面光滑的球体结构的ZnCo2O4电极材料。结果表明:加入石墨烯后,ZnCo2O4呈规则的多边形结构,附着在石墨烯片上,两者的协同作用可有效改善电极材料的电化学性能;钴酸锌与氧化石墨烯的质量比为6:1时得到的ZnCo2O4/rGO复合材料的比电容为205F/g,比纯ZnCo2O4的比电容提升了约114%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李芹
盛利成
董丽敏
张彦飞
金立国
关键词 钴酸锌石墨烯复合材料电极材料    
Abstract:A facile one-pot hydrothermal route was selected for the synthesis of ZnCo2O4 and ZnCo2O4/rGO composite electrode materials. The structure, morphology and electrochemical properties of the as-perpared materials were characterized by XRD, SEM and RST5000 electrochemical workstation. ZnCo2O4 electrode materials with a group of radial structure, folding lamellar structure and the spherical structure were obtained by changing the hydrothermal temperature. Results show that after the addition of graphene, ZnCo2O4 exhibits regular polygonal structure and is attached to graphene sheets. Their synergistic effect can effectively improve the electrochemical performance of electrode materials. When the mass ratio of zinc cobaltate to graphene oxide is 6:1, the specific capacitance of ZnCo2O4/rGO composite material is 205F/g, which is 114% higher than that of pure ZnCo2O4.
Key wordszinc cobaltate    graphene    composite material    electrode material
收稿日期: 2018-03-29      出版日期: 2019-04-19
中图分类号:  TB332  
通讯作者: 李芹(1980-),女,副教授,博士,研究方向:无机光电功能材料,联系地址:黑龙江省哈尔滨市南岗区征仪路249号哈尔滨理工大学南区材料科学与工程学院(150040),E-mail:qinalily@163.com     E-mail: qinalily@163.com
引用本文:   
李芹, 盛利成, 董丽敏, 张彦飞, 金立国. ZnCo2O4及ZnCo2O4/rGO复合材料的制备与电化学性能[J]. 材料工程, 2019, 47(4): 71-76.
LI Qin, SHENG Li-cheng, DONG Li-min, ZHANG Yan-fei, JIN Li-guo. Preparation and electrochemical properties of ZnCo2O4 and ZnCo2O4/rGO composites. Journal of Materials Engineering, 2019, 47(4): 71-76.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000342      或      http://jme.biam.ac.cn/CN/Y2019/V47/I4/71
[1] ZHENG Y, YANG Y B, CHEN S S, et al. Smart, stretchable and wearable supercapacitors:prospects and challenges[J]. Crystengcomm, 2016, 18(23):4218-4235.
[2] HAN Y, SHEN N, ZHANG S, et al. Fish gill-derived activated carbon for supercapacitor application[J]. Journal of Alloys & Compounds, 2016, 694:636-642.
[3] HUANG Y X, LIU Y, ZHAO G J, et al. Sustainable activated carbon fiber from sawdust by reactivation for high-performance supercapacitors[J]. Journal of Materials Science, 2016, 52(1):478-488.
[4] 陈玮,孙晓刚,蔡满园,等. 碳纳米管/纤维素复合纸为电极的超级电容器性能[J]. 材料工程, 2018, 46(10):113-119. CHEN W, SUN X G, CAI M Y, et al. Carbon nanotubes/celluose composite paper as electrodes for supercapacitor[J]. Journal of Materials Engineering, 2018, 46(10):113-119.
[5] 李诗杰,张继刚,李金晓,等. 超级电容器用马尾藻基超级活性炭的制备及其电化学性能[J]. 材料工程, 2018, 46(7):157-164. LI S J, ZHANG J G, LI J X, et al. Preparation and electr-ochemical property of gulfweed-based super activated carbon for supercapacitor[J]. Journal of Materials Engineering, 2018, 46(7):157-164.
[6] HWANG J Y, EL-KADY M F, WANG Y, et al. Direct prep-aration and processing of graphene/RuO2, nanocomposite electr-odes for high-performance capacitive energy storage[J]. Nano Energy, 2015, 18:57-70.
[7] WU X M, WANG Q G, ZHANG W Z, et al. Nanorod structure of polypyrrole-covered MoO3, for supercapacitors with excellent cycling stability[J]. Materials Letters, 2016, 182:121-124.
[8] WU H, LOU Z, YANG H, et al. A flexible spiral-type super-capacitor based on ZnCo2O4 nanorod electrodes[J]. Nanoscale, 2015, 7(5):1921-1926.
[9] MA W, NAN H, GU Z, et al. Superior performance asymmetric supercapacitors based on ZnCo2O4@MnO2 core-shell electrode[J]. Journal of Materials Chemistry A, 2015, 3(10):5442-5448.
[10] CHEN H, JIANG G, YU W, et al. Electrospun carbon nano-fibers coated with urchin-like ZnCo2O4 nanosheets as a flexible electrode material[J]. Journal of Materials Chemistry A, 2016, 4(16):5958-5964.
[11] LIU B, LIU H, LIANG M, et al. Controlled synthesis of hollow octahedral ZnCo2O4 nanocages assembled from ultrathin 2D nanosheets for enhanced lithium storage[J]. Nanoscale, 2017,9(44):17174-17180.
[12] WANG Q, YU B, LI X, et al. Core-shell Co3O4/ZnCo2O4 coconut-like hollow spheres with extremely high performance as anode materials for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016, 4(2):425-433.
[13] YU D, ZHANG Z, MENG Y, et al. The synthesis of hierarchical ZnCo2O4@MnO2 core-shell nanosheet arrays on Ni foam for high-performance all-solid-state asymmetric superca-pacitors[J]. Inorganic Chemistry Frontiers, 2018,5:597-604.
[14] RATHA S, ROUT C S. Self-assembled flower-like ZnCo2O4 hierarchical superstructures for high capacity supercapacitors[J]. RSC Advances, 2015, 5(105):86551-86557.
[15] WANG Y, KE J, ZHANG Y, et al. Microwave-assisted rapid synthesis of mesoporous nanostructured ZnCo2O4 anode mater-ials for high-performance lithium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(48):24303-24308.
[16] PATIL S J, PARK J, LEE D W. Facial synthesis of nanos-tructured ZnCo2O4 on carbon cloth for supercapacitor application[J]. 2017, 282(1):012004.
[17] 邓凌峰,彭辉艳,覃昱焜,等. 碳纳米管与石墨烯协同改性天然石墨及其电化学性能[J]. 材料工程, 2017, 45(4):121-127. DENG L F, PENG H Y, QIN Y K, et al. Combination carbon nanotubes with graphene modified natural graphite and its elect-rochemical performance[J]. Journal of Materials Engineering, 2017, 45(4):121-127.
[18] 南文争,燕绍九,彭思侃,等. 磷酸铁锂/石墨烯复合材料的合成及电化学性能[J]. 材料工程, 2018, 46(4):43-50. NAN W Z, YAN S J, PENG S K, et al. Synthesis and perfor-mance of LiFePO4-C/graphene composite[J]. Journal of Mater-ials Engineering, 2018, 46(4):43-50.
[19] 吕生华,朱琳琳,李莹,等. 氧化石墨烯复合材料的研究现状及进展[J]. 材料工程, 2016, 44(12):107-117. LYU S H, ZHU L L, LI Y, et al. Current situation and prog-ress of graphene oxide composites[J]. Journal of Materials Engineering, 2016, 44(12):107-117.
[20] 吴可嘉,董丽敏,张琬祺,等. 超级电容器用还原氧化石墨烯/NixMn(1-x/2)O2复合材料的电化学性能[J].复合材料学报, 2018, 35(5):234-242. WU K J, DONG L M, ZHANG W Q, et al. Electrochemical properties of reduced graphene oxide/NixMn(1-x/2)O2 compo-sites for supercapacitors[J]. Acta Materiae Compositae Sinica, 2018, 35(5):234-242.
[1] 王晨, 燕绍九, 南文争, 陈翔. 表面活性剂对高浓度石墨烯水分散液制备的影响[J]. 材料工程, 2019, 47(7): 50-56.
[2] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[3] 崔超婕, 田佳瑞, 杨周飞, 金鹰, 董卓娅, 谢青, 张刚, 叶珍珍, 王瑾, 刘莎, 骞伟中. 石墨烯在锂离子电池和超级电容器中的应用展望[J]. 材料工程, 2019, 47(5): 1-9.
[4] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[5] 尚楷, 武志红, 张路平, 王倩, 郑海康. 模板法制备MoSi2/竹炭复合材料及吸波性能[J]. 材料工程, 2019, 47(5): 122-128.
[6] 何宗倍, 张瑞谦, 付道贵, 李鸣, 陈招科, 邱邵宇. 不同界面SiC纤维束复合材料的拉伸力学行为[J]. 材料工程, 2019, 47(4): 25-31.
[7] 李亚锋, 礼嵩明, 黑艳伟, 邢丽英, 陈祥宝. 太阳辐照对芳纶纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(4): 39-46.
[8] 李曦. 二维和零维纳米材料协同增强的高性能纳米复合材料[J]. 材料工程, 2019, 47(4): 47-55.
[9] 王晨, 燕绍九, 南文争, 王继贤, 彭思侃. 高浓度石墨烯水分散液的制备与表征[J]. 材料工程, 2019, 47(4): 56-63.
[10] 卢子龙, 安立宝, 刘扬. 不同浓度硼掺杂石墨烯吸附多层金原子的第一性原理研究[J]. 材料工程, 2019, 47(4): 64-70.
[11] 张航, 路媛媛, 王涛, 鲁亚冉, 刘德健. 激光熔覆WC/H13-Inconel625复合材料的冲击韧性与磨损性能[J]. 材料工程, 2019, 47(4): 127-134.
[12] 李惠, 肖文龙, 张艺镡, 马朝利. 多重结构Ti-B4C/Al2024复合材料的组织和力学性能[J]. 材料工程, 2019, 47(4): 152-159.
[13] 史思涛, 陈畅, 郭政, 李国新, 伍勇华, 苏明周, 王会萌. 原料配比对多孔MgO/Fe-Cr-Ni复合材料性能的影响[J]. 材料工程, 2019, 47(4): 167-173.
[14] 王继刚, 余永志, 邹婧叶, 孟江, 李淑萍, 蒋南. 基于微波辐照合成类石墨烯氮化碳的研究进展[J]. 材料工程, 2019, 47(4): 15-24.
[15] 邹婧叶, 余永志, 顾永攀, 岳夏薇, 孟江, 李淑萍, 王继刚. 高能微波辐照合成类石墨烯氮化碳纳米片的结构特征[J]. 材料工程, 2019, 47(3): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn