Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (5): 100-106    DOI: 10.11868/j.issn.1001-4381.2018.000422
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响
李雅莉, 雷力明, 侯慧鹏, 何艳丽
中国航发上海商用航空发动机制造有限责任公司, 上海 201306
Effect of heat processing on microstructures and tensile properties of selective laser melting Hastelloy X alloy
LI Ya-li, LEI Li-ming, HOU Hui-peng, HE Yan-li
AECC Shanghai Commercial Aircraft Engine Manufacturing Co., Ltd., Shanghai 201306, China
全文: PDF(9659 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用激光选区熔化技术制备Hastelloy X试样,研究热等静压和固溶处理对Hastelloy X试样显微组织及拉伸性能的影响。结果表明:沉积态组织中可观察到熔池形貌、柱状晶及晶内的胞晶结构,无析出物,其拉伸性能表现出高强度低塑性特点,高温拉伸断口沿激光扫描熔化道断裂。经热等静压后,组织演变为等轴晶,晶界及晶内存在较多的析出物,裂纹愈合,试样拉伸强度降低,塑性提升,尤其是高温屈服强度降低了约48%,高温伸长率提升了约59%。经热等静压+固溶处理后,晶粒尺寸及形貌与热等静压态相比近乎无差异,但晶内析出物明显减少,该状态下的综合拉伸性能最优。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李雅莉
雷力明
侯慧鹏
何艳丽
关键词 激光选区熔化Hastelloy X热工艺组织拉伸性能    
Abstract:The technology of selective laser melting was used to fabricate Hastelloy X samples. The effect of hot isostatic pressing (HIP) and solution treatment on microstructures and tensile properties of Hastelloy X samples was investigated. The results show the as-deposited samples exhibit clear melt pool morphologies, columnar grain with embedded cellular structures and no obvious precipitates are detected. The corresponding tensile properties are characterized by high strength and low ductility. High temperature tensile fracture surface reveals that the as-deposited samples crack along laser scan tracks. After HIP, the microstructures evolved into equiaxed grains, and large amount of precipitates are found to distribute within grain boundaries and grain interiors. Besides, solidification cracks are effectively healed by HIP. In this circumstance, the tensile strength is decreased by about 48% combined with improved ductility up to 59% after high temperature tensile tests. After HIP+solution treatment, the grain size and morphology keep similar with that in HIP processed state, while the amount of precipitates inside grain areas is significantly reduced and an overall sound tensile property is achieved.
Key wordsselective laser melting    Hastelloy X    heat processing    microstructure    tensile property
收稿日期: 2018-04-15      出版日期: 2019-05-17
中图分类号:  TG113  
通讯作者: 雷力明(1976-),男,研究员,博士,主要从事航空发动机材料及关键零部件制造技术研发工作,联系地址:上海市浦东新区鸿音路77号(201306),E-mail:biamfirst@126.com     E-mail: biamfirst@126.com
引用本文:   
李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
LI Ya-li, LEI Li-ming, HOU Hui-peng, HE Yan-li. Effect of heat processing on microstructures and tensile properties of selective laser melting Hastelloy X alloy. Journal of Materials Engineering, 2019, 47(5): 100-106.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000422      或      http://jme.biam.ac.cn/CN/Y2019/V47/I5/100
[1] BHATTACHARYYA D, DAVIS J, DREW M, et al. Characterization of complex carbide-silicide precipitates in a Ni-Cr-Mo-Fe-Si alloy modified by welding[J]. Materials Characteriz-ation, 2015, 105:118-128.
[2] ABUZAID W,SEHITOGLUA H,LAMBROS J.Plastic strain localization and fatigue micro-crack formation in Hastelloy-X[J]. Materials Science and Engineering:A, 2013, 561:507-519.
[3] WANG F D. Mechanical property study on rapid additive layer manufacture Hastelloy® X alloy by selective laser melting techn-ology[J]. The International Journal of Advanced Manufacturing Technology, 2012, 58(5/8):545-551.
[4] BREMEN S, MEINERS W, DIATLOV A. Selective laser melting[J]. Laser Technik Journal, 2012, 9(2):33-38.
[5] KRUTH J P, FROYEN L, VAN VAERENBERGH J, et al. Selective laser melting of iron-based powder[J]. Journal of Materials Processing Technology, 2004, 149(1/3):616-622.
[6] GU D D. Laser additive manufacturing of high-performance mate-rials[M]. Berlin,Germany:Springer, 2015.
[7] MUMTAZ K A, ERASENTHIRAN P, HOPKINSON N. High density selective laser melting of Waspaloy®[J]. Journal of Mat-erials Processing Technology, 2008, 195(1):77-87.
[8] 李爱兰,汤鑫,曹腊梅,等. 热等静压温度对K447A高温合金显微组织及性能的影响[J]. 航空材料学报, 2012,32(2):13-19. LI A L, TANG X, CAO L M, et al. Effects of HIP temperature on microstructure and mechanical properties of K447A superalloy[J]. Journal of Aeronautical Materials, 2012, 32(2):13-19.
[9] 呼和. 镍基铸造高温合金的热等静压处理[J]. 金属学报, 2002,38(11):1199-1203. HU H. Hot isostatic pressing treatment of cast Ni-base supe-ralloy[J]. Acta Metallurgica Sinica, 2002,38(11):1199-1203.
[10] SWINKELS F B, WILKINSON D S, ARZT E, et al. Mechan-isms of hot-isostatic pressing[J]. Acta Metallurgica, 1983, 31(11):1829-1840.
[11] CHLEBUS E, GRUBER K, KU?NICKA B, et al. Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting[J]. Materials Science and Engineering:A, 2015, 639:647-655.
[12] WANG F, WU X H, CLARK D. On direct laser deposited Hastelloy X:dimension, surface finish, microstructure and mec-hanical properties[J]. Materials Science and Technology, 2011, 27:344-356.
[13] TOMUS D, TIAN Y, ROMETSCH P A, et al. Influence of post heat treatments on anisotropy of mechanical behaviour and microstructure of Hastelloy-X parts produced by selective laser melting[J]. Materials Science and Engineering:A, 2016, 667:42-53.
[14] 侯慧鹏,梁永朝,何艳丽,等. 选区激光熔化Hastelloy-X合金组织演变及拉伸[J]. 中国激光, 2017, 44(2):263-268. HOU H P, LIANG Y C, HE Y L, et al. Microstructural evol-ution and tensile property of Hastelloy-X alloys produced by selective laser melting[J]. Chinese Journal of Lasers, 2017, 44(2):263-268.
[15] XU R D, JIAO Z H, YU H C. Experimental evaluation of fatigue behaviors and tensile properties of selective laser melted K536 alloy at elevated temperatures[J]. Procedia Structural Integrity, 2017, 7:84-91.
[16] 杨慧慧,杨晶晶,喻寒琛,等.激光选区熔化成形TC4合金腐蚀行为[J]. 材料工程, 2018, 46(8):127-133. YANG H H, YANG J J, YU H C, et al. Corrosion behaviour of selective laser melted TC4 alloy[J]. Journal of Materials Engineering, 2018, 46(8):127-133.
[17] 杜博睿,张学军,郭绍庆,等.激光快速成形GH4169合金显微组织与力学性能[J]. 材料工程, 2017, 45(1):27-32. DU B R, ZHANG X J, GUO S Q, et al. Microstructure and mechanical properties of laser melting deposited GH4169 super-alloy[J]. Journal of Materials Engineering, 2017, 45(1):27-32.
[18] ZHAO J C, LARSEN M, RAVIKUMAR V. Phase precipita-tion and time-temperature-transformation diagram of Hastelloy X[J]. Materials Science and Engineering:A, 2000, 293(1/2):112-119.
[19] KIRCHHÖFER H, SCHUBERT F, NICKEL H. Precipitation behavior of Ni-Cr-22Fe-18Mo (Hastelloy-X) and Ni-Cr-22Co-12Mo (Inconel-617) after isothermal aging[J]. Nuclear Techn-ology, 1984, 66(1):139-148.
[20] 魏振伟,陶春虎,顾玉丽,等. GH536镍基高温合金焊接组织演变[J]. 航空材料学报, 2015, 35(6):41-47. WEI Z W, TAO C H, GU Y L, et al. Microstructure evolution of GH536 Ni-based superalloy welded by GTAW[J]. Journal of Aeronautical Materials, 2015, 35(6):41-47.
[21] 张永志,侯慧鹏,彭霜,等. 激光选区熔化Hastelloy X合金的显微组织与拉伸性能的各向异性[J]. 航空材料学报, 2018, 38(6):50-56. ZHANG Y Z, HOU H P, PENG S, et al. Anisotropy of micr-ostructure and mechanical properties of hastelloy X alloy produced by selective laser melting[J]. Journal of Aeronautical Materials, 2018, 38(6):50-56.
[1] 马明星, 王志新, 梁存, 周家臣, 张德良, 朱达川. CeO2掺杂对AlCoCrCuFe高熵合金的组织结构与摩擦磨损性能的影响[J]. 材料工程, 2019, 47(7): 106-111.
[2] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[3] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[4] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[5] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
[6] 陈林, 陈文静, 黄强, 熊中. 超声振动对EA4T钢激光熔覆质量和性能的影响[J]. 材料工程, 2019, 47(5): 79-85.
[7] 史振学, 刘世忠, 赵金乾, 王效光, 李嘉荣. 基于不同原始组织预设变形第四代单晶高温合金的再结晶行为[J]. 材料工程, 2019, 47(5): 107-114.
[8] 唐文珅, 杨新岐, 李胜利, 李会军. 焊接参数对铁素体不锈钢搅拌摩擦焊接头组织及性能的影响[J]. 材料工程, 2019, 47(5): 115-121.
[9] 黄利, 黄光杰, 吴晓东, 曹玲飞, 李佳. 预处理工艺对双辊铸轧3003铝合金再结晶行为的影响[J]. 材料工程, 2019, 47(4): 135-142.
[10] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[11] 侯琼, 陶宇, 贾建. 第四代粉末高温合金热变形后的“项链”组织[J]. 材料工程, 2019, 47(3): 94-100.
[12] 赵云松, 郭媛媛, 赵敬轩, 张晓铁, 刘砚飞, 杨岩, 姜华, 张剑, 骆宇时. 微量Hf对大角度晶界含Re双晶合金高温持久性能的影响[J]. 材料工程, 2019, 47(2): 76-83.
[13] 王宇, 熊柏青, 李志辉, 温凯, 黄树晖, 李锡武, 张永安. 新型超高强Al-Zn-Mg-Cu合金热压缩变形行为及微观组织特征[J]. 材料工程, 2019, 47(2): 99-106.
[14] 陈刚, 王璐, 杨静, 李强, 吕品, 马胜国. Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J]. 材料工程, 2019, 47(1): 106-111.
[15] 钟蛟, 彭志方, 陈方玉, 彭芳芳, 刘省, 石振斌. P92钢奥氏体化后的冷却方式对650℃时效组织及硬度稳定性的影响[J]. 材料工程, 2019, 47(1): 119-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn