Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (7): 99-105    DOI: 10.11868/j.issn.1001-4381.2018.000428
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理
王循1, 丁玉梅1,2, 余韶阳1, 杜琳1, 杨卫民1,2, 李好义1,2,*(), 陈明军1
1 北京化工大学 机电工程学院, 北京 100029
2 北京化工大学 有机-无机复合材料国家重点实验室, 北京 100029
Preparation and pollution treatment of degradable PLA/OMMT nanofiber membrane by melt differential electrospinning
Xun WANG1, Yu-mei DING1,2, Shao-yang YU1, Lin DU1, Wei-min YANG1,2, Hao-yi LI1,2,*(), Ming-jun CHEN1
1 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
2 State Key Laboratory of Organic-inorganic Composite, Beijing University of Chemical Technology, Beijing 100029, China
全文: PDF(3832 KB)   HTML ( 13 )  
输出: BibTeX | EndNote (RIS)      
摘要 

采用无溶剂的熔体静电纺丝技术制备可降解聚乳酸(PLA)纳米纤维,是一种很有前景和挑战性的绿色制备技术。其制备的纳米纤维膜孔隙率高、吸附能力强,可高效地处理环境污染问题。借助自制的熔体微分电纺装置,在PLA中引入了有机改性蒙脱土(OMMT),在260℃下制备了PLA/OMMT纳米纤维膜。探究了OMMT含量对PLA纤维形貌、吸油性能、空气过滤性能及降解性能的影响,并获得了最佳的OMMT配比含量。研究表明:加入OMMT后PLA热稳定性提高,结晶度大幅降低。OMMT质量分数为2%时制备的纤维,其直径为450nm。该纤维膜吸油倍率为133.5g/g,是市售PP无纺布的4~5倍,保油倍率为84.2g/g,具有良好的重复使用性能。针对粒径≥0.3μm尘埃粒子的空气过滤效率为99.31%,达到欧标H11过滤等级。且相比于纯PLA纤维膜降解性能提高,减少了二次污染,符合工业化绿色环保要求。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王循
丁玉梅
余韶阳
杜琳
杨卫民
李好义
陈明军
关键词 熔体静电纺丝污染纳米材料吸附过滤降解    
Abstract

Degradable polylactide (PLA) nanofibers can be prepared by solvent free melt electrospinning technology which is promising, challenging and green. The nanofiber membrane prepared by this method have high porosities and strong adsorption capacities, and thus are useful for treating the environmental pollution efficiently. The organic montmorillonite(OMMT) was introduced into PLA, and the PLA/OMMT nanofiber membrane were prepared at 260℃ by using a self-made melt differential electrospinning device. The effect of OMMT content of PLA nanofiber membrane on the morphology, the oil absorption property, the air filtration performance and the degradability was investigated, and the optimum OMMT content was obtained. The research shows that the thermal stability of PLA is increased and the crystallinity of PLA is decreased significantly after adding OMMT. When the OMMT content is 2%, the diameter of the fiber reaches 450nm. The oil absorption rate of the nanofiber membrane is 133.5g/g which is 4-5 times higher than that of commercially available PP non-wovens, and the oil holding rate is 84.2g/g. Moreover, the nanofiber membrane has good reuse performance. The air filtration efficiency of the nanofiber membrane for dust particles(≥0.3μm) is 99.31%, reaching the European standard H11 filtration class. The degradation of PLA/OMMT nanofiber membrane is improved comparing with the pure PLA, which reduces the second pollution and accords with the requirements of industrial green environmental protection.

Key wordsmelt electrospinning    pollution    nanomaterials    membrane    adsorption    filtration    degradation
收稿日期: 2018-04-16      出版日期: 2019-07-19
中图分类号:  TQ340.9  
基金资助:国家重点研发计划(2016YFB0302000);国家自然科学基金(51603009)
通讯作者: 李好义     E-mail: lhy@mail.buct.edu.cn
作者简介: 李好义(1987-), 男, 讲师, 博士, 研究方向为高分子材料先进制造, 联系地址:北京化工大学机电工程学院(100029), E-mail:lhy@mail.buct.edu.cn
引用本文:   
王循, 丁玉梅, 余韶阳, 杜琳, 杨卫民, 李好义, 陈明军. 熔体微分电纺PLA/OMMT可降解纳米纤维膜制备及污染处理[J]. 材料工程, 2019, 47(7): 99-105.
Xun WANG, Yu-mei DING, Shao-yang YU, Lin DU, Wei-min YANG, Hao-yi LI, Ming-jun CHEN. Preparation and pollution treatment of degradable PLA/OMMT nanofiber membrane by melt differential electrospinning. Journal of Materials Engineering, 2019, 47(7): 99-105.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000428      或      http://jme.biam.ac.cn/CN/Y2019/V47/I7/99
Fig.1  熔体微分静电纺丝装置
Fig.2  不同OMMT含量共混料TGA曲线
Mass fraction
of OMMT/%
Initial
decomposition
temperature/℃
Fastest
decomposition
temperature/℃
0 261.2 355.5
1 315.9 359.6
2 317.4 360.0
3 308.0 358.7
4 310.3 359.5
5 314.8 359.2
  不同OMMT含量共混料TGA参数
Fig.3  不同OMMT含量纤维SEM照片
Fig.4  不同OMMT含量纤维直径变化趋势
Fig.5  不同OMMT含量共混料XRD曲线
Fig.6  PLA/OMMT纤维膜油水浸润性
Fig.7  不同OMMT含量纤维膜吸油倍率和保油倍率
Fig.8  PLA/OMMT纤维膜重复吸油性能
Fig.9  PLA/OMMT纤维膜空气过滤性能
Fig.10  PLA/OMMT纤维膜降解性能
1 DENG D , PRENDERGAST D P , MACFARLANE J , et al. Hydro-phobic meshes for oil spill recovery devices[J]. Applied Materials & Interfaces, 2013, 5 (3): 774- 781.
2 李培勋, 于波, 卫秀成, 等. 吸油树脂的研究进展[J]. 材料工程, 2002, (10): 39- 42.
doi: 10.3969/j.issn.1001-4381.2002.10.011
2 LI P X , YU B , WEI X C , et al. Progress in oil absorption resin[J]. Journal of Materials Engineering, 2002, (10): 39- 42.
doi: 10.3969/j.issn.1001-4381.2002.10.011
3 DUTTA P , GOGOI B , DASS N N , et al. Efficient organic solvent and oil sorbent co-polyesters:poly-9-octadecenylacrylate/metha-crylate with 1-hexene[J]. Reactive & Functional Polymers, 2013, 73 (3): 457- 464.
4 KORHONEN J T , KETTUNEN M , RAS R H A , et al. Hydro-phobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents[J]. Applied Materials & Interfaces, 2011, 3 (6): 1813- 1816.
5 李小飞, 张明军, 王圣杰, 等. 中国空气污染指数变化特征及影响因素分析[J]. 环境科学, 2012, 33 (6): 1936- 1943.
5 LI X F , ZHANG M J , WANG S J , et al. Variation characteristics and influencing factors of air pollution index in China[J]. Environmental Science, 2012, 33 (6): 1936- 1943.
6 杨荆泉, 田涛. 驻极体过滤材料及其在空气净化领域的应用[J]. 环境与健康杂志, 2009, 26 (8): 743- 745.
6 YANG J Q , TIAN T . Application of electret filtration material in air purification[J]. Journal of Environment and Health, 2009, 26 (8): 743- 745.
7 丁彬, 斯阳, 俞建勇. 静电纺纳米纤维材料在环境领域中的应用研究[J]. 中国材料进展, 2013, 32 (8): 492- 502.
7 DING B , SI Y , YU J Y . Progress in the research of electrospun nanofibers for environmental applications[J]. Materials China, 2013, 32 (8): 492- 502.
8 LI H Y , LI Y , YANG W M , et al. Needleless melt-electrospinning of biodegradable poly(lactic acid) ultrafine fibers for the removal of oil from water[J]. Polymers, 2017, 9 (2): 3.
9 汪策.纳米纤维多孔膜的制备机器在空气过滤中的应用[D].上海: 东华大学, 2015.
9 WANG C.Preparation and characterization of composite porous nanofibrous membranes for air filtration[D]. Shanghai: Donghua University, 2015.
10 区炜锋, 严玉蓉. 静电纺多级孔材料制备研究进展[J]. 化工进展, 2009, 28 (10): 1766- 1770.
doi: 10.3321/j.issn:1000-6613.2009.10.014
10 QU W F , YAN Y R . Progress of preparation of electrospun hierar-chical porous materials[J]. Chemical Industry and Engineering Progress, 2009, 28 (10): 1766- 1770.
doi: 10.3321/j.issn:1000-6613.2009.10.014
11 LI H Y , WU W F , MAHMOUD M B , et al. Polypropylene fibers fabricated via a needleless melt-electrospinning device for marine oil-spill cleanup[J]. Journal of Applied Polymer Science, 2014, 131 (7): 2540- 2540.
12 LIU B W , ZHANG S C , WANG X L , et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid and Interface Science, 2015, 457, 203- 211.
doi: 10.1016/j.jcis.2015.07.019
13 LIN J Y , SHANG Y W , DING B , et al. Nanoporous polystyrene fibers for oil spill cleanup[J]. Marine Pollution Bulletin, 2012, 64 (2): 347- 352.
doi: 10.1016/j.marpolbul.2011.11.002
14 汪策, 李雄, 程诚, 等. 空气过滤用静电纺聚苯乙烯/碳纳米管复合纤维膜的制备[J]. 材料科学与工程学报, 2016, 34 (6): 960- 966.
14 WANG C , LI X , CHENG C , et al. Preparation of ultrafine fibrous membranes of Polystyrene/MWCNTs composites as air filter by electrospinning[J]. Journal of Materials Science & Engineering, 2016, 34 (6): 960- 966.
15 杨卫民, 李好义, 吴卫逢, 等. 熔体静电纺丝技术研究进展[J]. 北京化工大学学报(自然科学学报), 2014, 41 (4): 1- 13.
15 YANG W M , LI H Y , WU W F , et al. Research progress of melt electrospinning technology[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2014, 41 (4): 1- 13.
16 唐丹琦, 王娟, 郑天龙, 等. 聚乳酸/淀粉固体缓释碳源生物反硝化研究[J]. 环境科学, 2014, 35 (6): 2236- 2240.
16 TANG D Q , WANG J , ZHENG T L , et al. Effect of PLA/starch slow-release carbon source on biological denitrification[J]. Environmental Science, 2014, 35 (6): 2236- 2240.
17 SUPRAKAS S R , PRALAY M , MASAMI O , et al. New polyl-actide/layered silicate nanocomposites 1:preparation, characte-rization, and properties[J]. Macromolecules, 2002, 35 (8): 3104- 3110.
doi: 10.1021/ma011613e
18 车晶, 秦凡, 杨荣杰. 聚乳酸/蒙脱土纳米复合材料的原位聚合及表征[J]. 材料工程, 2011, (1): 28- 32.
doi: 10.3969/j.issn.1001-4381.2011.01.007
18 CHE J , QIN F , YANG R J . Polylactide/montmorillonite nanoc-omposites in-situ polymerization and characterization[J]. Journal of Materials Engineering, 2011, (1): 28- 32.
doi: 10.3969/j.issn.1001-4381.2011.01.007
19 崔玲娜, 刘跃军. PLA/I.34TCN纳米复合材料的制备及其性能研究[J]. 包装学报, 2017, 9 (3): 36- 42.
doi: 10.3969/j.issn.1674-7100.2017.03.005
19 CUI L N , LIU Y J . Preparation and properties of PLA/I.34TCN nanocomposites[J]. Packaging Journal, 2017, 9 (3): 36- 42.
doi: 10.3969/j.issn.1674-7100.2017.03.005
20 赵姗姗, 李媛, 曹海雷, 等. 聚乳酸/蒙脱土纳米复合材料的微博辅助制备及性能研究[J]. 材料工程, 2012, (2): 5- 8.
20 ZHAO S S , LI Y , CAO H L , et al. Preparation and characterization of PLA/MMT nanocomposites with microwave irradiation[J]. Journal of Materials Engineering, 2012, (2): 5- 8.
[1] 张林琳, 顾学林, 向笑笑, 刘会娥, 陈爽. 石墨烯-羧甲基纤维素复合气凝胶的制备及吸油性能评价[J]. 材料工程, 2022, 50(9): 43-51.
[2] 刘源, 赵华, 李会鹏, 蔡天凤, 王禹程. 碳氯共掺杂介孔g-C3N4的气泡模板法制备及光催化性能[J]. 材料工程, 2022, 50(9): 70-77.
[3] 孟倩, 李东阳, 杨江仁, 刘天增. 310S耐热钢的高温氧化行为[J]. 材料工程, 2022, 50(9): 137-149.
[4] 周银, 乔畅, 邹家栋, 郭洪锍, 王树奇. 多层石墨烯对钛合金摩擦学性能的影响[J]. 材料工程, 2022, 50(8): 107-114.
[5] 欧阳果仔, 李新冬, 张鑫, 李海柯, 李浪, 李文豪, 钟招煌. 聚醚酰亚胺耐溶剂超滤膜的制备及性能研究[J]. 材料工程, 2022, 50(8): 160-168.
[6] 陈爽, 韩雪艳, 安帅帅, 王勇杰, 李仕华. 基体表面粗糙度对MoS2/Ti薄膜摩擦磨损性能的影响[J]. 材料工程, 2022, 50(8): 169-177.
[7] 张铭泰, 余少彬, 李希成, 冯萃敏, 石梦童, 汪长征, 王强. 新型复合纳米材料用于光催化降解染料废水的研究进展[J]. 材料工程, 2022, 50(7): 59-68.
[8] 潘廷仙, 郑秋燕, 李茂辉, 同鑫, 胡长刚, 田娟. 酸处理对FeN/ZIF-8催化剂氧还原反应催化性能的影响[J]. 材料工程, 2022, 50(5): 122-129.
[9] 张晟, 曾俊彦, 尚方方, 曾祥琼. 电子皮肤热点核心材料及其在生命健康领域中的应用研究进展[J]. 材料工程, 2022, 50(2): 23-37.
[10] 吴鹏, 陈诚, 赵雪伶, 林东海. 纳米材料模拟酶应用进展[J]. 材料工程, 2022, 50(2): 62-72.
[11] 李晴, 钱付平, 董伟, 韩云龙, 鲁进利. 硅烷偶联剂KH570改性TiO2超疏水滤料的制备与性能[J]. 材料工程, 2022, 50(2): 144-152.
[12] 孙疆, 石章智, 李亚庚, 李相民, 李危石, 王鲁宁. 面向骨科植入应用的可降解锌基材料研究进展[J]. 材料工程, 2022, 50(11): 14-25.
[13] 朱陈杰, 陈海权, 于有海. 静电喷雾法/原位洗脱法结合制备电致变色薄膜[J]. 材料工程, 2022, 50(1): 109-116.
[14] 张文娟, 寇苗. 二维材料MXene在水处理领域的应用[J]. 材料工程, 2021, 49(9): 14-26.
[15] 肖伟, 杨占旭, 乔庆东. 石墨电极表面聚丙烯腈纳米纤维膜的制备及性能[J]. 材料工程, 2021, 49(9): 60-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn