1 College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China 2 State Key Laboratory of Organic-inorganic Composite, Beijing University of Chemical Technology, Beijing 100029, China
Degradable polylactide (PLA) nanofibers can be prepared by solvent free melt electrospinning technology which is promising, challenging and green. The nanofiber membrane prepared by this method have high porosities and strong adsorption capacities, and thus are useful for treating the environmental pollution efficiently. The organic montmorillonite(OMMT) was introduced into PLA, and the PLA/OMMT nanofiber membrane were prepared at 260℃ by using a self-made melt differential electrospinning device. The effect of OMMT content of PLA nanofiber membrane on the morphology, the oil absorption property, the air filtration performance and the degradability was investigated, and the optimum OMMT content was obtained. The research shows that the thermal stability of PLA is increased and the crystallinity of PLA is decreased significantly after adding OMMT. When the OMMT content is 2%, the diameter of the fiber reaches 450nm. The oil absorption rate of the nanofiber membrane is 133.5g/g which is 4-5 times higher than that of commercially available PP non-wovens, and the oil holding rate is 84.2g/g. Moreover, the nanofiber membrane has good reuse performance. The air filtration efficiency of the nanofiber membrane for dust particles(≥0.3μm) is 99.31%, reaching the European standard H11 filtration class. The degradation of PLA/OMMT nanofiber membrane is improved comparing with the pure PLA, which reduces the second pollution and accords with the requirements of industrial green environmental protection.
DENG D , PRENDERGAST D P , MACFARLANE J , et al. Hydro-phobic meshes for oil spill recovery devices[J]. Applied Materials & Interfaces, 2013, 5 (3): 774- 781.
LI P X , YU B , WEI X C , et al. Progress in oil absorption resin[J]. Journal of Materials Engineering, 2002, (10): 39- 42.
doi: 10.3969/j.issn.1001-4381.2002.10.011
3
DUTTA P , GOGOI B , DASS N N , et al. Efficient organic solvent and oil sorbent co-polyesters:poly-9-octadecenylacrylate/metha-crylate with 1-hexene[J]. Reactive & Functional Polymers, 2013, 73 (3): 457- 464.
4
KORHONEN J T , KETTUNEN M , RAS R H A , et al. Hydro-phobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents[J]. Applied Materials & Interfaces, 2011, 3 (6): 1813- 1816.
LI X F , ZHANG M J , WANG S J , et al. Variation characteristics and influencing factors of air pollution index in China[J]. Environmental Science, 2012, 33 (6): 1936- 1943.
DING B , SI Y , YU J Y . Progress in the research of electrospun nanofibers for environmental applications[J]. Materials China, 2013, 32 (8): 492- 502.
8
LI H Y , LI Y , YANG W M , et al. Needleless melt-electrospinning of biodegradable poly(lactic acid) ultrafine fibers for the removal of oil from water[J]. Polymers, 2017, 9 (2): 3.
9
汪策.纳米纤维多孔膜的制备机器在空气过滤中的应用[D].上海: 东华大学, 2015.
9
WANG C.Preparation and characterization of composite porous nanofibrous membranes for air filtration[D]. Shanghai: Donghua University, 2015.
QU W F , YAN Y R . Progress of preparation of electrospun hierar-chical porous materials[J]. Chemical Industry and Engineering Progress, 2009, 28 (10): 1766- 1770.
doi: 10.3321/j.issn:1000-6613.2009.10.014
11
LI H Y , WU W F , MAHMOUD M B , et al. Polypropylene fibers fabricated via a needleless melt-electrospinning device for marine oil-spill cleanup[J]. Journal of Applied Polymer Science, 2014, 131 (7): 2540- 2540.
12
LIU B W , ZHANG S C , WANG X L , et al. Efficient and reusable polyamide-56 nanofiber/nets membrane with bimodal structures for air filtration[J]. Journal of Colloid and Interface Science, 2015, 457, 203- 211.
doi: 10.1016/j.jcis.2015.07.019
13
LIN J Y , SHANG Y W , DING B , et al. Nanoporous polystyrene fibers for oil spill cleanup[J]. Marine Pollution Bulletin, 2012, 64 (2): 347- 352.
doi: 10.1016/j.marpolbul.2011.11.002
WANG C , LI X , CHENG C , et al. Preparation of ultrafine fibrous membranes of Polystyrene/MWCNTs composites as air filter by electrospinning[J]. Journal of Materials Science & Engineering, 2016, 34 (6): 960- 966.
YANG W M , LI H Y , WU W F , et al. Research progress of melt electrospinning technology[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2014, 41 (4): 1- 13.
TANG D Q , WANG J , ZHENG T L , et al. Effect of PLA/starch slow-release carbon source on biological denitrification[J]. Environmental Science, 2014, 35 (6): 2236- 2240.
17
SUPRAKAS S R , PRALAY M , MASAMI O , et al. New polyl-actide/layered silicate nanocomposites 1:preparation, characte-rization, and properties[J]. Macromolecules, 2002, 35 (8): 3104- 3110.
doi: 10.1021/ma011613e
CHE J , QIN F , YANG R J . Polylactide/montmorillonite nanoc-omposites in-situ polymerization and characterization[J]. Journal of Materials Engineering, 2011, (1): 28- 32.
doi: 10.3969/j.issn.1001-4381.2011.01.007
CUI L N , LIU Y J . Preparation and properties of PLA/I.34TCN nanocomposites[J]. Packaging Journal, 2017, 9 (3): 36- 42.
doi: 10.3969/j.issn.1674-7100.2017.03.005
ZHAO S S , LI Y , CAO H L , et al. Preparation and characterization of PLA/MMT nanocomposites with microwave irradiation[J]. Journal of Materials Engineering, 2012, (2): 5- 8.