Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 155-162    DOI: 10.11868/j.issn.1001-4381.2018.000446
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响
王盈辉1,2, 王快社1,2, 王文1,2, 彭湃1,2, 车倩颖1,2, 乔柯1,2
1. 西安建筑科技大学 冶金工程学院, 西安 710055;
2. 西安建筑科技大学 功能材料加工国家地方联合工程研究中心, 西安 710055
Effect of rotation speed on microstructure and properties of dissimilar submerged friction stir welding joints of aluminium and pure copper
WANG Ying-hui1,2, WANG Kuai-she1,2, WANG Wen1,2, PENG Pai1,2, CHE Qian-ying1,2, QIAO Ke1,2
1. School of Metallurgical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China;
2. National and Local Joint Engineering Research Center for Functional Materials Processing, Xi'an University of Architecture and Technology, Xi'an 710055, China
全文: PDF(6984 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 采用水下搅拌摩擦焊接(submerged friction stir welding,SFSW)技术对2024-T4铝合金和紫铜进行连接,研究转速对接头微观组织与力学性能的影响。结果表明:接头成型良好,无裂纹、孔洞等缺陷。随转速升高,接头表面平整度提高,大量铜被卷入焊核区(nugget zone,NZ),NZ组织结构逐渐混乱。SFSW过程中,冷却水有效抑制了晶粒粗化和脆性金属间化合物生成。当转速为750r/min时,接头抗拉强度为227MPa,达到铜母材的70.3%,随转速增大,接头的抗拉强度和伸长率降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王盈辉
王快社
王文
彭湃
车倩颖
乔柯
关键词 水下搅拌摩擦焊接2024铝合金紫铜微观组织力学性能    
Abstract:2024-T4 aluminium alloy and pure copper were welded by submerged friction stir welding (SFSW) and the effect of rotation speed on microstructure and mechanical properties of SFSW joints was studied. The results indicate that the SFSW joint is well formed, without cracks, holes and other defects. With the increase of rotation speed, the surface of the SFSW joint is smooth and the smoothness is improved. Meanwhile a large number of copper is involved in the nugget zone (NZ), and the structure in NZ is gradually disordered; the forced cooling effect of water effectively inhibits the formation of grain coarsening and brittle intermetallic compound during SFSW; the tensile strength of joint is 227MPa, which is 70.3% of the tensile strength of the copper base metal(BM) at the rotational speed of 750r/min and the tensile strength and elongation of the SFSW joint decrease with the increase of rotation speed.
Key wordssubmerged friction stir welding    2024 aluminium alloy    pure copper    microstructure    mech-anical property
收稿日期: 2018-04-23      出版日期: 2019-11-21
中图分类号:  TG457.1  
基金资助: 
通讯作者: 王快社(1966-),男,教授,博士,研究方向为搅拌摩擦焊接、搅拌摩擦加工,联系地址:陕西省西安市碑林区雁塔路13号西安建筑科技大学(710055),E-mail:wangkuaishe888@126.com     E-mail: wangkuaishe888@126.com
引用本文:   
王盈辉, 王快社, 王文, 彭湃, 车倩颖, 乔柯. 转速对铝铜异种材料水下搅拌摩擦焊接接头组织与性能的影响[J]. 材料工程, 2019, 47(11): 155-162.
WANG Ying-hui, WANG Kuai-she, WANG Wen, PENG Pai, CHE Qian-ying, QIAO Ke. Effect of rotation speed on microstructure and properties of dissimilar submerged friction stir welding joints of aluminium and pure copper. Journal of Materials Engineering, 2019, 47(11): 155-162.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000446      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/155
[1] LI Z W, JI S D, MA Y N, et al. Fracture mechanism of refill friction stir spot-welded 2024-T4 aluminum alloy[J]. Intern-ational Journal of Advanced Manufacturing Technology, 2016, 86(5/8):1925-1932.
[2] ZHANG Q Z, GONG W B, LIU W. Microstructure and mechanical properties of dissimilar Al-Cu joints by friction stir welding[J]. Transactions of Nonferrous Metals Society of China, 2015,25(6):1779-1786.
[3] XUE P, NI D R, WANG D, et al. Effect of friction stir welding parameters on the microstructure and mechanical properties of the dissimilar Al-Cu joints[J]. Materials Science and Engineering:A, 2011, 528(13/14):4683-4689.
[4] AL-ROUBAIY A O, NABAT S M, BATAKO A D L. Experi-mental and theoretical analysis of friction stir welding of Al-Cu joints[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(9/12):1631-1642.
[5] 乔柯,王快社,王文,等. 转速对铝铜层状复合板搅拌摩擦焊接接头组织性能的影响[J]. 航空材料学报, 2017, 37(5):35-40. QIAO K, WANG K S, WANG W, et al. Effect of rotation rate on microstructure and properties of friction stir welded joints of Al/Cu clad plates[J]. Journal of Aeronautical Materials, 2017, 37(5):35-40.
[6] PRONICHEV D V, GUREVICH L M, TRYKOV Y P, et al. Investigation of aluminum-copper bimetal-based intermetallide coating produced by contact melting method[J]. Inorganic Materials:Applied Research, 2016, 7(1):97-101.
[7] GALVÃO I, LEAL R M, LOUREIRO A, et al. Material flow in heterogeneous friction stir welding of aluminium and copper thin sheets[J]. Science and Technology of Welding and Joining, 2013, 15(8):654-660.
[8] THOMAS W M, MURCH M G, NICHOLAS E D, et al. Improvements relating to friction welding:EP0653265[P]. 1995-05-17.
[9] MOFID M A, ABDOLLAH-ZADEH A, GHAINI F M, et al. Submerged friction-stir welding (SFSW) underwater and under liquid nitrogen:an improved method to join Al alloys to Mg alloys[J]. Metallurgical and Materials Transactions A, 2012, 43(13):5106-5114.
[10] ABDOLLAH-ZADEH A, SAEID T, SAZGARI B. Microst-ructural and mechanical properties of friction stir welded aluminum/copper lap joints[J]. Journal of Alloys and Comp-ounds, 2008, 460(1/2):535-538.
[11] ZHAO Y, JIANG S, YANG S, et al. Influence of cooling conditions on joint properties and microstructures of aluminum and magnesium dissimilar alloys by friction stir welding[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(1/4):673-679.
[12] ZHANG J Q, SHEN Y F, YAO X, et al. Investigation on dissimilar underwater friction stir lap welding of 6061-T6 alumi-num alloy to pure copper[J]. Materials & Design, 2014, 64:74-80.
[13] HAJINEZHAD M, AZIZI A. Numerical analysis of effect of coolant on the transient temperature in underwater friction stir welding of Al6061-T6[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(5/8):1241-1252.
[14] 郝亚鑫,王文,徐瑞琦,等. 焊后热处理对7A04铝合金水下搅拌摩擦焊接接头组织性能的影响[J]. 材料工程, 2016, 44(6):70-75. HAO Y X, WANG W, XU R Q, et al. Effect of post weld heat treatment on microstructure and mechanical properties of submerged friction stir welded 7A04 aluminum alloy[J]. Journal of Materials Engineering, 2016, 44(6):70-75.
[15] ZHANG H J, LIU H J, LEI Y U. Thermal modeling of underwater friction stir welding of high strength aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4):1114-1122.
[16] 王文,李天麒,乔柯,等. 转速对水下搅拌摩擦焊接7A04-T6铝合金组织与性能的影响[J]. 材料工程, 2017, 45(10):32-38. WANG W, LI T Q, QIAO K, et al. Effect of rotation rate on microstructure and properties of underwater friction stir welded 7A04-T6 aluminum alloy[J]. Journal of Materials Engineering, 2017, 45(10):32-38.
[17] McNELLEY T R, SWAMINATHAN S, SU J Q. Recry-stallization mechanisms during friction stir welding/processing of aluminum alloys[J]. Scripta Materialia, 2008, 58(5):349-354.
[18] BHATTACHARYA T K, DAS H, JANA S S, et al. Num-erical and experimental investigation of thermal history, material flow and mechanical properties of friction stir welded aluminium alloy to DHP copper dissimilar joint[J]. International Journal of Advanced Manufacturing Technology, 2017, 88(1/4):1-15.
[19] GALVÃO I, VERDERA D, GESTO D, et al. Influence of aluminium alloy type on dissimilar friction stir lap welding of aluminium to copper[J]. Journal of Materials Processing Technology, 2013, 213(11):1920-1928.
[20] GALVÃO I, OLIVEIRA J C, LOUREIRO A, et al. Formation and distribution of brittle structures in friction stir welding of aluminium and copper:influence of process parameters[J]. Science and Technology of Welding and Joining, 2011, 16(8):681-689.
[21] LIU H J, SHEN J J, ZHOU L, et al. Microstructural chara-cterisation and mechanical properties of friction stir welded joints of aluminium alloy to copper[J]. Science and Technology of Welding and Joining, 2013, 16(1):92-98.
[22] AVETTAND-FENOËL M N, TAILLARD R, JI G, et al. Multiscale study of interfacial intermetallic compounds in a dissimilar Al6082-T6/Cu friction-stir weld[J]. Metallurgical and Materials Transactions A, 2012, 43(12):4655-4666.
[23] MUTHU M F X, JAYABALAN V. Tool travel speed effects on the microstructure of friction stir welded aluminium-copper joints[J]. Journal of Materials Processing Technology, 2015, 217:105-113.
[24] JONES M J, HEURTIER P, DESRAYAUD C, et al. Corr-elation between microstructure and microhardness in a friction stir welded 2024 aluminium alloy[J]. Scripta Materialia, 2005, 52(8):693-697.
[25] LIU H J, SHEN J J, XIE S, et al. Weld appearance and microstructural characteristics of friction stir butt barrier welded joints of aluminium alloy to copper[J]. Science and Technology of Welding and Joining, 2012, 17(2):104-110.
[1] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[2] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[6] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[7] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[8] 李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[11] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[12] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[13] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[14] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[15] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn