Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 50-62    DOI: 10.11868/j.issn.1001-4381.2018.000582
  综述 本期目录 | 过刊浏览 | 高级检索 |
微弧氧化技术的发展及其应用
宋仁国1,2
1. 常州大学 材料科学与工程学院, 江苏 常州 213164;
2. 常州大学 江苏省材料表面科学与技术重点实验室, 江苏 常州 213164
Development and applications of micro-arc oxidation technology
SONG Ren-guo1,2
1. School of Materials Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China;
2. Jiangsu Key Laboratory of Materials Surface Science and Technology, Changzhou University, Changzhou 213164, Jiangsu, China
全文: PDF(12957 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 综述了国内外微弧氧化(MAO)技术的发展概况,重点介绍了微弧氧化技术的原理和工艺特点;总结了微弧氧化陶瓷膜显微组织与性能的影响因素以及应用;分析了微弧氧化技术目前存在的问题,并指出微弧氧化技术今后将向低能耗、超大型复杂轻金属构件处理及与其他表面技术复合的方向发展的趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋仁国
关键词 微弧氧化技术陶瓷膜显微组织性能应用    
Abstract:The development status of micro-arc oxidation (MAO) technology at home and abroad was reviewed. The principle and process characteristics of MAO technology were primarily introduced. The influence factors for the microstructure and properties of MAO ceramic coatings as well as the applications of MAO technology were summarized. Also, the existing problems of MAO technology were analyzed, and it has been pointed out that MAO technology will be developed towards the direction of low energy consumption, treatment of ultra-large and complex light metal components and combining with other surface technologies in the future.
Key wordsmicro-arc oxidation technology    ceramic coating    microstructure    property    application
收稿日期: 2018-05-18      出版日期: 2019-03-12
中图分类号:  TG174.451  
通讯作者: 宋仁国(1965-),男,博士,教授,博士生导师,主要研究方向为材料腐蚀与防护、表面工程、计算材料科学等,联系地址:江苏省常州市武进区滆湖路常州大学材料学院(213164),E-mail:songrg@cczu.edu.cn     E-mail: songrg@cczu.edu.cn
引用本文:   
宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
SONG Ren-guo. Development and applications of micro-arc oxidation technology. Journal of Materials Engineering, 2019, 47(3): 50-62.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000582      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/50
[1] 刘耀辉,李颂. 微弧氧化技术国内外研究进展[J]. 材料保护, 2005, 38(6):36-40. LIU Y H, LI S. Current status and progress of study on micro-arc oxidation technology[J]. Materials Protection, 2005, 38(6):36-40。
[2] 薛文斌,邓志威,来永春,等. 有色金属表面微弧氧化技术评述[J]. 金属热处理, 2000, 35(1):1-3. XUE W B, DENG Z W, LAI Y C, et al. Review of microarc oxidation technique on surface of non-ferrous metals[J]. Heat Treatment of Metals, 2000, 35(1):1-3.
[3] 白照高,闵雪涛. 微弧氧化技术的应用与发展[J]. 热加工工艺, 2015, 44(6):12-14. BAI Z G, MIN X T. Research on application and development of micro-arc oxidation process[J]. Hot Working Technology, 2015, 44(6):12-14.
[4] 王德云,东青,陈传忠. 微弧氧化技术的研究进展[J]. 硅酸盐学报, 2005, 33(9):1133-1138. WANG D Y, DONG Q, CHEN C Z. Recent progress of micro-arc oxidation technique[J]. Journal of the Chinese Ceramic Society, 2005, 33(9):1133-1138.
[5] 刘建平,旷亚非. 微弧氧化技术及其发展[J]. 材料导报, 1998, 12(5):27-29. LIU J P, KUANG Y F.Micro-arc oxidation technique and its development[J]. Materials Review,1998, 12(5):27-29.
[6] 钟涛生,蒋百灵,李均明. 微弧氧化技术的特点、应用前景及其研究方向[J]. 电镀与涂饰,2005, 24(6):47-50. ZHONG T S, JIANG B L, LI J M. Characteristics, applications and research direction of micro-arc oxidation technology[J]. Electroplating & Finishing, 2005, 24(6):47-50.
[7] 刘凤玲,骆更新,毛立信. 微弧氧化与材料表面陶瓷化[J]. 材料保护, 1998, 31(3):22-24. LIU F L, LUO G X, MAO L X. Micro-arc oxidation and materials surface ceramic transformation[J]. Materials Protection, 1998,31(3):22-24.
[8] GUNTERSCHULZE A, BETZ H. Neue untersuchungen uber die elektrolytische ventilwirkung:Ⅱdie oxydschicht von Sb, Bi, W, Zr, Al, Zn, Mg[J]. Zeitschrift Für Physik, 1932, 78(3/4):196-210.
[9] GǜINTERSCHULZ A, BETZ H. Die elektronenstromung in isolatoren bei extremen feldstarken[J]. Zeitschrift Für Physik, 1934, 91(1/2):70-96.
[10] VAN T B, WIRTZ G P, BROWN S D. Anodic spark deposited coatings[J]. America Ceramic Society Bulletin, 1976, 55(4):412.
[11] WIRTZ G P, BROWN S D, KRIVEN W M. Ceramics coatings by anodic spark deposition[J]. Materials and Manufacturing Processes, 1991, 6(1):87-115.
[12] KRYSMANN W, KURZE P, DITTRICH K H, et al. Process characteristics and parameters of anodic oxidation by spark discharge (ANOF)[J]. Crystal Research and Technology, 1984, 19(7):973-979.
[13] KURZE P, KRYSMANN W, SCHREKENBACH J, et al. Colored ANOF layers on aluminum[J]. Crystal Research and Technology, 1987, 22(1):53-58.
[14] VAN T B, BROWN S D, WIRTZ G P. Mechanism of anodic spark deposition[J]. American Ceramic Society Bulletin, 1997, 56:105-107.
[15] DITTRICK K H, GLEOAZD L. Micro-arc oxidation of aluminum alloy components[J]. Crystal Research & Technology, 1984, 19(1):93-96.
[16] 李淑华,尹玉军,程金生. 微弧氧化技术与材料表面陶瓷化[J]. 特种铸造及有色合金, 2001, 35(1):35-36. LI S H, YIN Y J, CHENG J S. Technology of microarc oxidation and ceramics of material surface[J]. Special Casting & Nonferrous Alloys,2001, 35(1):35-36.
[17] 徐勇. 国内铝和铝合金微弧氧化技术研究动态[J]. 腐蚀与防护, 2003, 24(4):154-157. XU Y. Recent development of microarc oxidation technology in china[J]. Corrosion & Protection, 2003, 24(4):154-157.
[18] 张文华,胡正前,马晋. 俄罗斯微弧氧化技术研究进展[J]. 轻合金加工技术, 2004, 32(1):25-29. ZHANG W H, HU Z Q, MA J. The development of research on microarc oxidation technology in Russia[J]. Light Alloy Fabrication Technology, 2004, 32(1):25-29.
[19] 庄俊杰,张晓燕,孙斌,等. 微弧氧化对7050铝合金腐蚀行为的影响[J]. 工程科学学报, 2017, 39(10):1532-1539. ZHUANG J J, ZHANG X Y, SUN B,et al. Microarc oxidation coatings and corrosion behavior of 7050 aluminum alloy[J]. Chinese Journal of Engineering, 2017, 39(10):1532-1539.
[20] ZHUANG J J, GUO Y Q, XIANG N, et al. A study on microstructure and corrosion resistance of ZrO2-containing PEO coatings formed on AZ31 Mg alloy in phosphate-based electrolyte[J]. Applied Surface Science, 2015, 357:1463-1471.
[21] XIANG N, SONG R G, XIANG B, et al. A study on photocatalytic activity of micro-arc oxidation TiO2 films and Ag+/MAO-TiO2 composite films[J]. Applied Surface Science, 2015, 347:454-460.
[22] 庄俊杰,宋仁国,项南,等. 6063铝合金微弧氧化膜层的腐蚀行为研究[J]. 腐蚀科学与防护技术, 2017, 29(5):492-498. ZHUANG J J, SONG R G, XIANG N,et al, Corrosion behavior of micro-arc oxidation coatings formed on 6063 aluminum alloy[J]. Corrosion Science and Protection Technology, 2017, 29(5):492-498.
[23] 戈云杰,宋仁国,王超,等. 铸铝合金微弧氧化时间对陶瓷膜微观结构及性能的影响[J].材料保护,2015,48(3):6-8. GE Y J, SONG R G, WANG C,et al, Effect of micro-arc oxidation time on microstructure as well as wear resistance and corrosion resistance of ceramic coatings on cast aluminum alloy[J]. Materials Protection, 2015,48(3):6-8.
[24] XIANG N, SONG R G, LI H, et al. Study on microstructure and electrochemical corrosion behavior of PEO coatings formed on aluminum alloy[J]. Journal of Materials Engineering and Performance, 2015, 24:5022-5031.
[25] XIANG N, SONG R G, WANG C, et al. Formation of corrosion resistant plasma electrolytic oxidation coatings on aluminium alloy with addition of sodium tungstate species[J]. Corrosion Engineering Science and Technology, 2016, 51(2):146-154.
[26] CAO G P, SONG R G. Microstructure and properties of ceramic coatings prepared by micro-arc oxidation on 7075 aluminum alloy[J]. Materials Research Express, 2018, 5(2):026407.
[27] ZHUANG J J, SONG R G, XIANG N, et al. Effect of oxidation time on corrosion resistance of plasma electrolytic oxidation coatings on magnesium alloy[J]. International Journal of Materials Research, 2017, 108(9):758-766.
[28] ZHUANG J J, SONG R G, XIANG N, et al. Effect of current density on microstructure and properties of PEO ceramic coatings on magnesium alloy[J]. Surface Engineering, 2017, 33(10):744-752.
[29] LU J P, CAO G P, QUAN G F, et al. Effects of voltage on microstructure and corrosion resistance of micro-arc oxidation ceramic coatings formed on KBM10 magnesium alloy[J]. Journal of Materials Engineering and Performance, 2018, 27:147-154.
[30] XIANG N, ZHUANG J J, SONG R G, et al. Fabrication and photocatalytic activity of MAO-TiO2 films formed on titanium doped with cations[J]. Materials Technology, 2016, 31(6):332-336.
[31] XIANG N, SONG R G, XIANG B, et al. Preparation and photocatalytic activity of MAO-TiO2 films formed on titanium doped with V2O5 and Ag2O[J]. Materials Technology, 2016, 31(1):58-63.
[32] 左洪波,孔庆山,尚久琦. 等离子体增强化学表面陶瓷化技术[J]. 材料保护, 1995, 28(7):117-120. ZUO H B, KONG Q S, SHANG J Q. Plasma enhanced chemical surface ceramic transformation technology[J]. Materials Protection, 1995,28(7):117-120.
[33] XUE W, WANG C, LI Y. Effect of micro-arc discharge surface treatment on the tensile properties of Al-Cu-Mg alloy[J]. Materials Letters, 2002, 56:737-743.
[34] 李淑华,程金生,尹玉军,等. LY12Al合金微弧氧化过程中电流和电压变化规律[J]. 腐蚀科学与防护技术, 2001, 13(6):362-364. LI S H, CHENG J S, YIN Y J,et al, Changing regularity on current and voltage during microarc oxidation of LY12 alloy[J]. Corrosion Science and Technology Protection,2001, 13(6):362-364.
[35] XUE W, WANG C, CHEN R, et al. Structure and properties characterization of coatings produced on Ti-6Al-4V alloy by micro-arc oxidation in aluminum[J]. Materials Letters, 2002, 52(6):435-441.
[36] 蒋百灵,吴建国,张淑芬,等. 镁合金微弧氧化陶瓷层生长过程及微观结构的研究[J]. 材料热处理学报, 2002, 23(1):5-8. JIANG B L, WU J G, ZHANG S F,et al, Research on micromechanism and growth procedure of ceramic coating formed by micro-arc oxidation on magnesium alloys[J]. Transactions of Materials and Heat Treatment, 2002, 23(1):5-8.
[37] 张欣宇. 铝及铝合金表面的等离子微弧氧化及膜层性能研究[D]. 青岛:青岛科技大学, 2002. ZHANG X Y. Technique of plasma micro-arc oxidation on surface of aluminum and its alloy and properties analysis of its coating[D]. Qingdao:Tsingtao University of Science & Technology, 2002.
[38] 张文凡. 铝合金表面微弧氧化着色工艺及其电源研究[D]. 武汉:武汉理工大学, 2009. ZHANG W F. Study of aluminum alloys surface technology by micro-arc oxidation and its power supply[D]. Wuhan:Wuhan University of Technology, 2009.
[39] YOUNG L. Space charge in formation of anodic oxide films[J]. Acta Metallurgica Sinica, 1956, 4(1):100-101.
[40] ZAHAVI Y J. Electrolytic breakdown crystallization of anodic oxide films on Al, Ta and Ti[J]. Electrochim Acta, 1970, 15(9):1429-1435.
[41] O'DWYER J J. The theory of avalanche breakdown in solid dielectrics[J]. Journal of Physics & Chemistry of Solids, 1967, 28(7):1137-1144.
[42] VIJH A K. Sparking voltages and side reactions during anodization of valve metals in terms of electron tunnelling[J]. Corrosion Science, 1971, 11(6):411-417.
[43] ALBELLA J M, MONTERO I, MARTINEZ-DUART J M. Electron injection and avalanche during the anodic oxidation of tantalum[J]. Cheminform, 1984, 131(5):1101-1104.
[44] RYKALIN N N, NIKOLAEV A V, BORZHOV A P. Energy balance of a high current hollow tungsten cathode[J]. Fizikai Khimiya Obrabotki Materialov, 1977, 2:32-41.
[45] TSAO L C. Interfacial structure and fracture behavior of 6061 Al and MAO-6061 Al direct active soldered with Sn-Ag-Ti active solder[J]. Materials & Design, 2014, 56:318-324.
[46] SHCHEDRINA I, RAKOCH A G, MARTIN J. Non-destructive methods to control the properties of MAO coatings on the surface of 2024 aluminium alloy[J]. Surface and Coatings Technology, 2014, 238:27-44.
[47] TSENG C C, LEE J L, KUO T H, et al. The influence of sodium tungstate concentration and anodizing conditions on microarc oxidation (MAO) coatings for aluminum alloy[J]. Surface and Coatings Technology, 2012, 206(15):3437-3443.
[48] TRAN Q P, KUO Y C, SUN J K, et al. High quality oxide-layers on Al-alloy by micro-arc oxidation using hybrid voltages[J]. Surface and Coatings Technology, 2016, 303:61-67.
[49] ZHAO S T, MENG C L, MAO F X, et al. Influence of severe plastic deformation on dynamic strain aging of ultrafine grained Al-Mg alloys[J]. Acta Materialia, 2014, 76:61-67.
[50] LI H X, LI W J, SONG R G, et al. Effects of different current densities on properties of MAO coatings embedded with and without α-Al2O3 nano additives[J]. Materials Science and Technology, 2013, 28(5):565-568.
[51] WHEELER J M, CURRAN J A, SHRESTHA S, et al. Microstructure and multi-scale mechanical behavior of hard anodized and plasma electrolytic oxidation(PEO) coatings on aluminum alloy 5052[J]. Surface and Coatings Technology, 2012, 207:480-488.
[52] XIANG N, SONG R G, ZHAO J, et al. Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminium alloy by micro-arc oxidation[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(10):3323-3328.
[53] DEHNAVI V, SHOESMITH D W, LUAN B L, et al. Corrosion properties of plasma electrolytic oxidation coatings on an aluminium alloy-the effect of the PEO process stage[J]. Materials Chemistry and Physics, 2015, 161:49-58.
[54] JUNG Y C, SHIN K R, KO Y G, et al. Surface characteristics and biological response of titanium oxide layer formed via micro-arc oxidation in K3PO4 and Na3PO4 electrolytes[J]. Journal of Alloys and Compounds, 2014, 586:548-552.
[55] MÉCUSON F, CZERWIEC T. Diagnostics of an electrolytic microarc process for aluminium alloy oxidation[J]. Surface and Coatings Technology, 2005, 200(1/4):804-808.
[56] 周雅,江溢民,周佳. 反向占空比对铝合金微弧氧化膜组织结构和耐蚀性能的影响[J]. 材料保护, 2012, 45(1):33-35. ZHOU Y, JIANG Y M, ZHOU J. Effect of reverse duty cycle on microstructure and corrosion resistance of micro-arc oxidation coating on aluminum alloy[J]. Materials Protection, 2012, 45(1):33-35.
[57] XIANG N, SONG R G, ZHUANG J J, et al. Effects of current density on microstructure and properties of PEO ceramic coatings formed on 6063 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2016, 26:806-813.
[58] 张欣宇,石玉龙. 等离子体微弧氧化技术及其应用[J]. 青岛化学工学院学报, 2002, 23(1):69-73. ZHANG X Y, SHI Y L. Technique of plasma microarc oxidation and its application[J]. Journal of Qingdao Institute of Chemical Technology, 2002, 23(1):69-73.
[59] 骆海贺,蔡启舟,魏伯康,等. 添加剂浓度对微弧氧化陶瓷层结构及耐蚀性的影响[J]. 中国有色金属学报, 2008, 18(6):1082-1088. LUO H H, CAI Q Z, WEI B K,et al. Effects of additive concentration on microstructure and corrosion resistance of ceramic coatings formed by micro-arc oxidation on AZ91D Mg alloy[J].The Chinese Journal of Nonferrous Metals, 2008, 18(6):1082-1088.
[60] 赵坚,宋仁国,李红霞,等. 纳米添加剂对6063铝合金微弧氧化层组织与性能的影响[J]. 材料热处理学报, 2010, 31(4):125-128. ZHAO J, SONG R G, LI H X,et al. Effects of nano-additive on microstructure and properties of micro-arc oxidation coatings on 6063 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2010, 31(4):125-128.
[61] 董海荣,马颖,郭惠霞,等. AZ91D镁合金微弧氧化膜的致密性对其耐蚀性的影响[J]. 中国有色金属学报, 2015, 25(4):844-851. DONG H R, MA Y, GUO H X,et al. Compactness of micro-arc oxidation coatings on AZ91D magnesium alloys and its effect on coating corrosion resistance[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(4):844-851.
[62] MORI Y, KOSHI A, LIAO J S, et al. Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate-silicate mixture electrolytes[J]. Corrosion Science, 2014, 88:254-262.
[63] LI L, SHI J, WANG X, et al. Microstructure and electrochemical behavior of cerium conversion coating modified with silane agent on magnesium substrates[J]. Applied Surface Science, 2016, 376(1):161-171.
[64] HUSSEIN R O, NIE X, NORTHWOOD D O, et al. An investigation of ceramic coating growth mechanisms in plasma electrolytic oxidation (PEO) processing[J]. Electrochimica Acta, 2013, 112:111-119.
[65] 孙志华,刘明,国大鹏,等. 微弧氧化技术的发展现状和存在问题分析[J]. 装备环境工程, 2009, 6(6):46-49. SUN Z H, LIU M, GUO D P, et al. Analysis on recent development and problems of micro-arc oxidation technology[J]. Equipment Environmental Engineering, 2009, 6(6):46-49.
[66] 赵东升,刘洲超,魏刚,等. 微弧氧化技术的研究进展与展望[J]. 热加工工艺, 2017, 46(22):41-43. ZHAO D S, LIU Z C, WEI G,et al, Research development and prospect of micro-arc oxidation technique[J]. Hot Working Technology, 2017, 46(22):41-43.
[67] 宋仁国,贺星,孔德军,等. 一种海洋平台钢表面激光熔覆-微弧氧化涂层的制备方法:CN107675170A[P]. 2018-02-09. SONG R G, HE X, KONG D J, et al. A preparation method of laser cladding and micro-arc oxidation coating on offshore platform steel:CN107675170A[P]. 2018-02-09.
[1] 刘培生, 夏凤金, 程伟. 多孔材料性能模型研究2:实验验证[J]. 材料工程, 2019, 47(7): 35-49.
[2] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[3] 徐斌, 陈程华, 张彩霞, 鲁聪达, 倪忠进. 热分解法制备Cu空心微球及其光热转换性能[J]. 材料工程, 2019, 47(7): 57-63.
[4] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[5] 李立珺, 苗瑞霞, 张霞. 氧化锡纳米线的制备及其乙醇气体敏感性能[J]. 材料工程, 2019, 47(6): 82-87.
[6] 刘培生, 崔光, 程伟. 多孔材料性能模型研究1:数理关系[J]. 材料工程, 2019, 47(6): 42-62.
[7] 马明亮, 杨玉莹, 吕平, 贾丽, 贾新城, 陈柳, 孔令运, 池丽凤. 磁性核壳Fe3O4/P (GMA-DVB)-SH-Au复合催化剂的制备及催化性能[J]. 材料工程, 2019, 47(6): 70-76.
[8] 冀光普, 何秀芳, 廖海峰, 戴乐阳, 孙迪, 蔡谷昌. 等离子体辅助球磨制备表面修饰片状纳米Cu粉及摩擦学性能[J]. 材料工程, 2019, 47(6): 114-120.
[9] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[10] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
[11] 韩梅, 谢洪吉, 李嘉荣, 董建民, 岳晓岱, 喻健, 杨亮. 再结晶对DD6单晶高温合金轴向高周疲劳性能的影响[J]. 材料工程, 2019, 47(6): 161-168.
[12] 陈海龙, 杨学锋, 王守仁, 鹿重阳, 吴元博. 改性酚醛树脂陶瓷摩擦材料的摩擦磨损性能[J]. 材料工程, 2019, 47(6): 108-113.
[13] 闫钊鸣, 张治民, 杜玥, 张冠世, 任璐英. 均匀化处理对Mg-13Gd-3.5Y-2Zn-0.5Zr镁合金组织和力学性能的影响[J]. 材料工程, 2019, 47(5): 93-99.
[14] 张志斌, 尉小凤, 王海涛, 史雪婷, 冯利邦. 金属基超疏水表面的制备及性能研究进展[J]. 材料工程, 2019, 47(5): 26-33.
[15] 薛子明, 雷卫宁, 王云强, 钱海峰, 李奇林. 超临界条件下脉冲占空比对石墨烯复合镀层微观结构和性能的影响[J]. 材料工程, 2019, 47(5): 53-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn