Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (3): 109-115    DOI: 10.11868/j.issn.1001-4381.2018.000766
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响
常海, 郭雪刚, 文磊, 金莹
北京科技大学 国家材料服役安全科学中心, 北京 100083
Influence of SiC nanoparticles on microstructure and corrosion behavior of microarc oxidation coatings formed on TC4 alloy
CHANG Hai, GUO Xue-gang, WEN Lei, JIN Ying
National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083, China
全文: PDF(7786 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 在基础电解液中加入SiC纳米颗粒,利用微弧氧化技术在TC4钛合金表面制备微弧氧化陶瓷涂层,研究纳米颗粒的添加对微弧氧化涂层组织结构及耐蚀性能的影响。结果表明:550,600V及650V条件下,基础电解液中SiC的加入,使TC4微弧氧化涂层的厚度由9.2,12.8μm和12.4μm分别增大到12.0,14.9μm和20.0μm。随着电压的升高,微弧氧化涂层的表面粗糙度逐渐增大,分别为2.65,3.34μm和3.61μm。SiC的加入有效抑制微弧氧化涂层表面裂纹的产生,增加涂层厚度从而降低涂层的阳极电流密度,提高微弧氧化涂层的耐蚀性能。微弧氧化涂层增加了TC4的开路电位及自腐蚀电位。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
常海
郭雪刚
文磊
金莹
关键词 TC4微弧氧化SiC纳米颗粒腐蚀行为    
Abstract:A microarc oxidation (MAO) coating was fabricated on the surface of TC4 alloy by adding SiC nano-particle into the base electrolyte. The influence of nanoparticles on the microstructure and corrosion behavior of MAO coatings was investigated. The results show that the introduction of SiC nanoparticles into the base electrolyte makes the coating thickness of MAO coating increased, from 9.2, 12.8, 12.4μm to 12.0, 14.9, 20.0μm, respectively, under the conditions of 550, 600V and 650V. The surface roughness of the coating (2.65, 3.34μm and 3.61μm) fabricated in SiC-containing solution increases with increasing the applied voltage. The introduction of SiC nanoparticles can effectively inhibit the microcracks in the coating, the coating thickness increase, and reduce the anodic current density, and thus the corrosion property of MAO coating increases. The OCP(open circuit potential) and corrosion potential increase by MAO coating.
Key wordsTC4    microarc oxidation    SiC nanoparticle    corrosion behavior
收稿日期: 2018-06-23      出版日期: 2019-03-12
中图分类号:  TG561  
通讯作者: 文磊(1982-),男,副研究员,博士,从事专业:腐蚀与防护及金属材料表面改性,联系地址:北京市海淀区学院路30号北京科技大学项目建设指挥部(100083),E-mail:wenlei@ustb.edu.cn     E-mail: wenlei@ustb.edu.cn
引用本文:   
常海, 郭雪刚, 文磊, 金莹. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J]. 材料工程, 2019, 47(3): 109-115.
CHANG Hai, GUO Xue-gang, WEN Lei, JIN Ying. Influence of SiC nanoparticles on microstructure and corrosion behavior of microarc oxidation coatings formed on TC4 alloy. Journal of Materials Engineering, 2019, 47(3): 109-115.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.000766      或      http://jme.biam.ac.cn/CN/Y2019/V47/I3/109
[1] HE D X,ZHANG T C,WU Y S. Retracted:fretting and galvanic corrosion behaviors and mechanisms of Co-Cr-Mo and Ti-6Al-4V alloys[J]. Wear,2001,249(10/11):883-891.
[2] TAHER N M,AL JABAB A S. Galvanic corrosion behavior of implant suprastructure dental alloys[J]. Dental Materials,2003,19(1):54-59.
[3] GURRAPPA I. Characterization of titanium alloy Ti-6Al-4V for chemical,marine and industrial applications[J]. Materials Characterization,2003,51(2):131-139.
[4] GURRAPPA I, REDDY D V. Characterisation of titanium alloy, IMI-834 for corrosion resistance under different environmental conditions[J]. Journal of Alloys and Compounds,2005,390(1):270-274.
[5] CODARO E N,NAKAZATO R Z,HOROVISTIZ A L,et al. An image analysis study of pit formation on Ti-6Al-4V[J]. Materials Science and Engineering:A,2003,341(1):202-210.
[6] 王宏宇,陈康敏,许晓静,等. 钛合金Ti-6Al-4V的磨损失效及其表面耐磨处理技术[J]. 轻金属,2005(5):54-58. WANG H Y,CHEN K M,XU X J,et al. Wear failure and surface abrasion resistance treatment technology of Ti-6Al-4V alloy[J]. Light Metals,2005(5):54-58.
[7] 屠振密,李宁,朱永明. 钛及钛合金表面处理技术和应用[M]. 北京:国防工业出版社,2010. TU Z M,LI N,ZHU Y M. Surface treatment methods and their applications for Ti and Ti alloys[M]. Beijing:National Defense Industry Press,2010.
[8] 薛文斌,邓志威,来永春,等. 有色金属表面微弧氧化技术评述[J]. 金属热处理,2000(1):1-3. XUE W B,DENG Z W,LAI Y C,et al. Review of microarc oxidation technique on surface of non-ferrous metals[J]. Heat Treatment of Metals,2000(1):1-3.
[9] LI H,SUN Y,ZHANG J. Effect of ZrO2 particle on the performance of micro-arc oxidation coatings on Ti6Al4V[J]. Applied Surface Science,2015,342:183-190.
[10] SHOAEI-RAD V,BAYATI M R,ZARGAR H R,et al. In situ growth of ZrO2-Al2O3 nano-crystalline ceramic coatings via micro arc oxidation of aluminum substrates[J]. Materials Research Bulletin,2012,47(6):1494-1499.
[11] WANG Y,WEI D,YU J,et al. Effects of Al2O3 nano-additive on performance of micro-arc oxidation coatings formed on AZ91D Mg alloy[J]. Journal of Materials Science & Technology,2014,30(10):984-990.
[12] LI H,SONG R,JI Z. Effects of nano-additive TiO2 on performance of micro-arc oxidation coatings formed on 6063 aluminum alloy[J]. Transactions of Nonferrous Metals Society of China,2013,23(2):406-411.
[13] ALIOFKHAZRAEI M,ROUHAGHDAM A S,SHAHRABI T. Abrasive wear behaviour of Si3N4/TiO2 nanocomposite coatings fabricated by plasma electrolytic oxidation[J]. Surface and Coatings Technology,2010,205:41-46.
[14] DZHURINSKIY D,GAO Y,YEUNG W K,et al. Characterization and corrosion evaluation of TiO2:n-HA coatings on titanium alloy formed by plasma electrolytic oxidation[J]. Surface and Coatings Technology,2015,269:258-265.
[15] SHOKOUHFAR M,ALLAHKARAM S R. Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles[J]. Surface and Coatings Technology,2016,291:396-405.
[16] YANG Y,LIU Y H. Effects of current density on the microstructure and the corrosion resistance of alumina coatings embedded with SiC nano-particles produced by micro-arc oxidation[J]. Journal of Materials Science & Technology,2010,26(11):1016-1020.
[17] YANG Y,WU H. Effects of current frequency on the microstructure and wear resistance of ceramic coatings embedded with SiC nano-particles produced by micro-arc oxidation on AZ91D magnesium alloy[J]. Journal of Materials Science & Technology,2010,26(10):865-871.
[18] 刘峰斌,孙大超,崔岩,等. SiC增强Ti-6Al-4V合金微弧氧化陶瓷层的摩擦磨损性能[J]. 稀有金属材料与工程,2018,47(4):1314-1318. LIU F B,SUN D C,CUI Y,et al. Tribological behaviors of ceramic coatings fabricated by micro-arc oxidation with addition of SiC micro-particles for Ti-6Al-4V alloys[J]. Rare Metal Materials and Engineering,2018,47(4):1314-1318.
[19] 蒋百灵,白力静,蒋永锋. 铝合金微弧氧化陶瓷层组织结构与性能的研究[J]. 中国机械工程,2001,12(3):331-333. JIANG B L,BAI L J,JIANG Y F. Study on microstructure and properties of micro-arc oxidation ceramic layer of aluminum alloy[J]. China Mechanical Engineering,2001,12(3):331-333.
[20] 马臣,王颖慧,曲立杰,等. 钛合金微弧氧化技术的研究现状及展望[J]. 中国陶瓷工业,2007,14(1):46-49. MA C,WANG Y H,QU L J,et al. The recent research status and prospect of micro-arc oxidation technique on titanium alloy[J]. China Ceramic Industry,2007,14(1):46-49.
[21] SHIN K R,KIM Y S,KIM G W,et al. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation[J]. Applied Surface Science,2015,347:574-582.
[22] YU L,CAO J,CHENG Y. An improvement of the wear and corrosion resistances of AZ31 magnesium alloy by plasma electrolytic oxidation in a silicate-hexametaphosphate electrolyte with the suspension of SiC nanoparticles[J]. Surface and Coatings Technology,2015,276:266-278.
[1] 黄希, 李小燕, 方晓东, 熊子成, 彭奕超, 韦丽华. 容错事故燃料包壳用FeCrAl合金的研究进展[J]. 材料工程, 2020, 48(3): 19-33.
[2] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[3] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[4] 王玉洁, 张鹏, 王选, 杜云慧, 王胜林, 张伟一, 鹿红梅. 氧气流量对LY12铝合金微弧氧化膜致密性的影响[J]. 材料工程, 2019, 47(5): 86-92.
[5] 宋仁国. 微弧氧化技术的发展及其应用[J]. 材料工程, 2019, 47(3): 50-62.
[6] 鹿旭飞, 林鑫, 马良, 曹阳, 黄卫东. 扫描路径对激光立体成形TC4构件热-力场的影响[J]. 材料工程, 2019, 47(12): 55-62.
[7] 周梦林, 饶少凯, 周均, 郑照县, 肖衡, 郑靖. 微弧氧化处理镁合金在接骨板服役工况下的微动磨损特性[J]. 材料工程, 2018, 46(9): 80-87.
[8] 马慧媛, 刘慧丛, 石文静, 施丽铭, 李卫平, 朱立群. 应力载荷作用下5A06铝合金薄板材料在盐水中腐蚀行为[J]. 材料工程, 2018, 46(9): 152-159.
[9] 刘小辉, 王帅星, 杜楠, 赵晴, 康佳, 刘欢欢. 电解液中Na2WO4对Ti2AlNb微弧氧化膜结构及摩擦磨损性能的影响[J]. 材料工程, 2018, 46(2): 84-92.
[10] 唐仕光, 陈泉志, 蒋智秋, 童庆, 董婉冰, 李伟洲. 激光重熔处理对铝合金微弧氧化膜组织与性能的影响[J]. 材料工程, 2018, 46(12): 157-164.
[11] 赵燕春, 毛瑞鹏, 袁小鹏, 许丛郁, 蒋建龙, 孙浩, 寇生中. Ti基金属玻璃复合材料的腐蚀行为[J]. 材料工程, 2018, 46(1): 25-30.
[12] 黄祖江, 蒋智秋, 董婉冰, 童庆, 李伟洲. 微弧氧化及包埋渗铝法制备的复合涂层高温抗蚀性能[J]. 材料工程, 2018, 46(1): 44-52.
[13] 朱郎平, 南海, 李建崇, 黄东, 罗倩. TC4预合金粉末模壳热等静压成型技术[J]. 材料工程, 2016, 44(7): 32-36.
[14] 文磊, 王亚明, 金莹. 表面纳米化-微弧氧化复合涂层对铝合金拉伸性能影响机制研究[J]. 材料工程, 2016, 44(3): 15-20.
[15] 夏伶勤, 韩建民, 崔世海, 杨智勇, 李卫京. SiCp/A356复合材料微弧氧化陶瓷膜的生长规律与性能[J]. 材料工程, 2016, 44(1): 40-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn