Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (1): 108-114    DOI: 10.11868/j.issn.1001-4381.2018.001159
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
AZ91及AZ91-Y合金复合干摩擦性能的对比
李春华, 王晗, 郝海
大连理工大学 材料科学与工程学院, 辽宁 大连 116024
Comparison on the rolling-sliding dry friction property of AZ91 and AZ91-Y alloy
LI Chun-hua, WANG Han, HAO Hai
School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, Liaoning, China
全文: PDF(3728 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 为了探究AZ91镁合金的复合干摩擦行为,以未淬火45钢为摩擦副,在不同载荷下(100,200,300 N),开展AZ91及Y含量为1.0%(质量分数)合金的复合干摩擦实验。采用OM,XRD,SEM等观察合金的磨损形貌并分析磨损机理。结果表明:增加法向载荷,两试样复合磨损率线性增加但摩擦因数却逐渐减小;Al2Y硬质颗粒可细化晶粒、弱化相界面开裂倾向以提高AZ91-Y合金耐磨性。100,300 N法向载荷下,AZ91-Y合金主要磨损机制分别为磨粒磨损和剥离磨损,与基体(AZ91)一致,其磨损率分别降低了21.7%和5.9%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李春华
王晗
郝海
关键词 AZ91复合干摩擦磨粒磨损剥离磨损    
Abstract:The rolling-sliding dry friction properties of AZ91 and AZ91-Y (1.0% Y) (mass fraction)were studied with 45 steel as friction pair. The experiment was carried out under different normal loads (100,200,300 N), respectively. The worn surfaces of AZ91 and AZ91-Y samples were investigated by energy dispersive spectrometer (EDS),scanning electron microscopy (SEM) and X-ray diffraction (XRD) so as to analyze wear mechanism. The results indicate that the wear rates of AZ91 and AZ91-Y samples boost linearly but the friction coefficients are decreased gradually with the increase of normal loads. Al2Y particles can refine grains, weaken the tendency of interface cracking to improve the wear resistance.Hence,the wear rates of AZ91-Y are decreased by 21.7% and 5.9% compared with AZ91 alloy when normal loads are 100, 300 N, respectively. Meanwhile,the main wear mechanisms of AZ91-Y alloy are abrasive wear and delamination wear, which is the same with AZ91 alloy.
Key wordsAZ91    composite dry friction    abrasive wear    delamination wear
收稿日期: 2018-10-06      出版日期: 2020-01-09
中图分类号:  TG146.2  
基金资助: 
通讯作者: 郝海(1969-),男,教授,博士,现从事轻合金凝固及强韧化研究,联系地址:辽宁省大连市甘井子区凌工路2号大连理工大学材料学院(116024),E-mail:haohai@dlut.edu.cn     E-mail: haohai@dlut.edu.cn
引用本文:   
李春华, 王晗, 郝海. AZ91及AZ91-Y合金复合干摩擦性能的对比[J]. 材料工程, 2020, 48(1): 108-114.
LI Chun-hua, WANG Han, HAO Hai. Comparison on the rolling-sliding dry friction property of AZ91 and AZ91-Y alloy. Journal of Materials Engineering, 2020, 48(1): 108-114.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001159      或      http://jme.biam.ac.cn/CN/Y2020/V48/I1/108
[1] 席俊杰,刘杰.高性能稀土镁合金的研究及其应用[J].热加工工艺,2014,43(10):6-10. XI J J,LIU J.Research and application of high performance rare earth magnesium alloy[J]. Hot Working Technology,2014,43(10):6-10.
[2] 袁杰,郭宝会.Mg合金在汽车工业中的应用进展[J].铸造技术,2017,38(12):2799-2804. YUAN J,GUO B H.Research advances of magnesium alloys in automobile applications[J].Foundry Technology,2017,38(12):2799-2804.
[3] 吴国华,陈玉狮,丁文江.镁合金在航空航天领域研究应用现状与展望[J].载人航天,2016,22(3):281-292. WU G H,CHEN Y S,DING W J.Current research,application and future prospect of magnesium alloys in aerospace industry[J].Manned Spaceflight,2016,22(3):281-292.
[4] 刘军,张金玲,渠治波,等.稀土Gd对AZ31镁合金耐蚀性能的影响[J].材料工程,2018,46(6):73-79. LIU J,ZHANG J L,QU Z B,et al.Effect of rare earth Gd on corrosion resistance of AZ31 magnesium alloy[J].Journal of Materials Engineering,2018,46(6):73-79.
[5] 万迪庆,袁艳平,周新建.高强镁合金组织细化方法研究现状[J].材料导报,2015,29(9):76-80. WAN D Q,YUAN Y P,ZHOU X J.A review of microstructure refinement methods for high strength magnesium alloys[J]. Materials Reports,2015,29(9):76-80.
[6] 陈巧旺,汤爱涛,许婷熠,等.高性能铸造稀土镁合金的发展[J].材料导报,2016,30(17):1-9. CHEN Q W,TANG A T,XU T Y,et al.High performance cast magnesium rare-earth alloys:retrospect and prospect[J].Materials Review,2016,30(17):1-9.
[7] 唐见茂.新能源汽车轻量化材料[J].新型工业化,2016,6(1):1-14. TANG J M.New energy vehicle lightweight materials[J].Journal of New Industrialization,2016,6(1):1-14.
[8] CHEN H,ALPAS A T.Sliding wear map for the magnesium alloy Mg-9Al-0.9Zn (AZ91)[J].Wear,2000,246(1):106-116.
[9] TALTAVULL C,RODRIGO P,TORRES B,et al.Dry sliding wear behavior of AM50B magnesium alloy[J].Materials& Design,2014,56(4):549-556.
[10] 祁庆琚,刘勇兵,杨晓红.稀土对镁合金AZ91D摩擦磨损性能的影响[J].中国稀土学报,2002,20(5):428-432. QI Q J,LIU Y B,YANG X H.Effects of rare earths on friction and wear characteristics of magnesium alloy AZ91D[J].Journal of the Chinese Rare Earth Society,2002,20(5):428-432.
[11] KUMAR S,KUMAR D.Role of CeO2,doping on tribological behavior of Al2O3,coated AZ91 alloy[J].Surface & Coatings Technology,2018,349(18):462-469.
[12] LPEZZATO,VANGELINI,KBRUNELLI,et al.Tribological and corrosion behavior of PEO coatings with graphite nanoparticles on AZ91 and AZ80 magnesium alloys[J].Transactions of Nonferrous Metals Society of China,2018,28(2):259-272.
[13] XIAO P,GAO Y M,XU F X,et al.Tribological behavior of in-situ nanosized TiB2 particles reinforced AZ91 matrix composite[J].Tribology International,2018,128(12):130-139.
[14] ZAFARI A,GHASEMI H M,MAHMUDI R.An investigation on the tribological behavior of AZ91 and AZ91+3wt%RE magnesium alloys at elevated temperatures[J].Materials & Design,2014,54(2):544-552.
[15] YAN H,WANG Z W.Effect of heat treatment on wear properties of extruded AZ91 alloy treated with yttrium[J].Journal of Rare Earth,2016,34(3):308-314.
[16] 董方,刘月,郭升乐,等.稀土元素Y对AZ91D镁合金显微组织和力学性能的影响[J].轻合金加工技术,2018,46(5):66-70. DONG F,LIU Y,GUO S Y,et al. Effects of Y on microstructure and mechanical properties of AZ91D magnesium alloy[J].Light Alloy Fabrication Technology,2018,46(5):66-70.
[17] TONG G D,LIU H F,LIU Y H. Effect of rare earth additions on microstructure and mechanical properties of AZ91 magnesium alloys[J]. Transactions of Nonferrous Metals Societys of China,2010,20(2):336-340.
[18] 王雪敏,曾小勤,吴国松,等.合金元素对镁合金氧化性能的影响[J].材料导报,2006,20(11):69-72. WANG X M,ZENG X Q,WU G S,et al.The effects of alloy elements on oxidation properties of magnesium alloys[J].Materials Reports,2006,20(11):69-72.
[19] QI Q J.Friction and wear characteristics of rare earth-containing magnesium alloy[J].Chinese Journal of Nonferrous Metals,2006,16(7):1219-1226.
[20] 苏桂花,曹占义.稀土镁合金抗氧化的机理[J].铸造,2010,59(6):553-557. SU G H,CAO Z Y.Oxidation resistance mechanism of rare earth magnesium alloy[J].Foundry,2010,59(6):553-557.
[21] HAO H,LIU X T,FANG C F,et al.Effect of in-situ Al2Y particles on the as-cast/as-rolled microstructure and mechanical properties of AZ31 alloy[J].Materials Science & Engineering:A,2017,698:27-35.
[22] 束德林.工程材料力学性能[M].北京:机械工业出版社,2007. SHU D L.Mechanical properties of engineering materials[M].Beijing:China Machine Press,2007.
[23] FACCOLI M,PETROGALLI C,LANCINI M,et al.Effect of desert sand on wear and rolling contact fatigue behavior of various railway wheel steels[J].Wear,2018,396/397(2):146-161.
[24] WANG G,QU S,LAI F,et al.Rolling contact fatigue and wear properties of 0.1C-3Cr-2W-V nitrided steel[J].International Journal of Fatigue,2015,77(8):105-114.
[25] BAKSHI S D,LEIRO A,PRAKASH B,et al.Dry rolling/sliding wear of nanostructured bainite[J].Wear,2014,316(1/2):70-78.
[26] DALLAGO M,BENEDETTI M,ANCELLOTTI S,et al.The role of lubricating fluid pressurization and entrapment on the path of inclined edge cracks originated under rolling-sliding contact fatigue:numerical analyses vs experimental evidences[J].International Journal of Fatigue,2016,92(12):517-530.
[27] DING H H,FU Z K,WANG W J,et al.Investigation on the effect of rotational speed on rolling wear and damage behaviors of wheel/rail materials[J].Wear,2015,330/331(5/6):563-570.
[28] 何成刚,周桂源,王娟,等.曲率半径对车轮滚动接触疲劳性能的影响[J].摩擦学学报,2014,34(3):256-261. HE C G,ZHOU G Y,WANG J,et al.Effect of curve radius of rail on rolling contact fatigue properties of wheel steel[J].Tribology,2014,34(3):256-261.
[1] 宿辉, 刘辉, 张春波. AZ91D镁合金表面环境友好直接化学镀镍工艺研究[J]. 材料工程, 2020, 48(8): 163-168.
[2] 赵曦, 贾瑞灵, 周伟光, 郭锋. 稀土对AZ91镁合金干/湿循环腐蚀产物及阻抗行为的影响[J]. 材料工程, 2017, 45(4): 41-50.
[3] 舒冠华, 李新梅, 王攀. 锰对扩散退火后热浸镀Al-Mn镀层抗磨粒磨损性能的影响[J]. 材料工程, 2015, 43(11): 77-83.
[4] 王智慧, 万国力, 贺定勇, 蒋建敏, 崔丽. Fe-Cr-B-C堆焊合金的组织与耐磨性[J]. 材料工程, 2014, 0(9): 57-62.
[5] 游国强, 张均成, 谭霞. 压铸镁合金AZ91D搅拌摩擦焊接头焊核演变机理研究[J]. 材料工程, 2014, 0(2): 29-33.
[6] 查吉利, 龙思远, 吴星宇, 张均成, 王向杰. 压铸AZ91D镁合金激光重熔区氢气孔的形成机制[J]. 材料工程, 2013, 0(6): 29-34.
[7] 刘敬, 高晓丽, 徐杨, 陈晓敏, 凌刚. 激光熔覆仿生非光滑表面磨粒磨损性能的研究[J]. 材料工程, 2013, 0(12): 32-36.
[8] 游国强, 王向杰, 齐冬亮, 郭强, 龙思远. 线能量对挤压AZ91D镁合金GTAW焊接接头组织与性能的影响[J]. 材料工程, 2013, 0(10): 57-63,70.
[9] 游国强, 张均成, 王向杰, 陈勇. 压铸态AZ91D镁合金搅拌摩擦焊接头微观组织研究[J]. 材料工程, 2012, 0(5): 54-58.
[10] 方世杰, 刘耀辉, 乔健, 张伟. SRB对AZ91镁合金在两种培养基中腐蚀行为的影响[J]. 材料工程, 2011, 0(9): 56-61,67.
[11] 龚建勋, 肖逸锋, 马蓦. 过共晶高硼堆焊合金的显微组织及耐磨性[J]. 材料工程, 2011, 0(4): 89-93.
[12] 胡茂良, 吉泽升, 陈晓瑜, 王渠东. 热挤压AZ91D镁合金边角料组织和性能的研究[J]. 材料工程, 2011, 0(2): 52-55,59.
[13] 何美凤, 刘磊, 仵亚婷, 田福英, 胡文彬. AZ91D镁合金表面熔盐置换扩散涂层组织及耐腐蚀性能研究[J]. 材料工程, 2010, 0(4): 86-88,93.
[14] 邱艳丽, 杨振国. 碱性介质中旋塞阀磨损失效分析[J]. 材料工程, 2008, 0(6): 60-63.
[15] 张丁非, 兰伟, 丁培道, 张保平. AZ91镁合金的凝固冷却速度与二次枝晶间距的定量关系研究[J]. 材料工程, 2007, 0(4): 23-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn