Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (11): 135-140    DOI: 10.11868/j.issn.1001-4381.2018.001160
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
烧结温度对大电流电场烧结制备W-Mo-Cu合金的影响
刘艳芳, 冯可芹, 周虹伶, 柯思璇
四川大学 机械工程学院, 成都 610065
Effects of sintering temperature on W-Mo-Cu alloy prepared by large current electric field sintering
LIU Yan-fang, FENG Ke-qin, ZHOU Hong-ling, KE Si-xuan
School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
全文: PDF(3214 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 利用大电流电场烧结工艺在875~1000℃的烧结温度下快速制备W-Mo-Cu合金,研究烧结温度对W-Mo-Cu合金微观组织、硬度及导电性的影响。基于合金烧结过程中的尺寸变化,通过拟合计算得到烧结特征指数,从而推断W-Mo-Cu合金烧结过程中的主要迁移机制。结果表明:烧结温度为875~975℃时,随着烧结温度升高,W-Mo-Cu合金中的孔隙减少,相对密度、显微硬度及电导率提高。当烧结温度为875~925℃时,W-Mo-Cu合金的致密化主要由塑性变形而非烧结引起。当烧结温度高于925℃时,W-Mo-Cu合金致密化过程中经历的主要迁移机制依次为塑性流动、体积扩散、晶界扩散和表面扩散。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘艳芳
冯可芹
周虹伶
柯思璇
关键词 电场W-Mo-Cu合金烧结温度致密化性能    
Abstract:The W-Mo-Cu alloy was rapidly prepared by a large current electric field sintering method at 875-1000℃. Effect of sintering temperature on microstructure, hardness and electrical conductivity was investigated. Based on the dimensional change during alloy sintering, the sintering characteristic index was obtained by fitting calculation, and the main migration mechanism of W-Mo-Cu alloy during sintering was inferred. The results show that the pores of the W-Mo-Cu alloy decrease, the relative density, microhardness and electrical conductivity increase at the same time with the increase of sintering temperature at 875-975℃. When the sintering temperature is between 875℃ and 925℃, the densification of the alloy is mainly caused by plastic deformation instead of sintering; when the sintering temperature is higher than 925℃, the order of the main migration mechanism experienced during the densification of W-Mo-Cu alloy is plastic flow, volume diffusion, grain boundary diffusion and surface diffusion.
Key wordselectric flied    W-Mo-Cu alloy    sintering temperature    densification    performance
收稿日期: 2018-10-06      出版日期: 2019-11-21
中图分类号:  TF124  
基金资助: 
通讯作者: 冯可芹(1970-),女,教授,从事粉末冶金材料制备研究,联系地址:四川省成都市一环路南一段24号四川大学机械工程学院(610065),E-mail:kqfeng@scu.edu.cn     E-mail: kqfeng@scu.edu.cn
引用本文:   
刘艳芳, 冯可芹, 周虹伶, 柯思璇. 烧结温度对大电流电场烧结制备W-Mo-Cu合金的影响[J]. 材料工程, 2019, 47(11): 135-140.
LIU Yan-fang, FENG Ke-qin, ZHOU Hong-ling, KE Si-xuan. Effects of sintering temperature on W-Mo-Cu alloy prepared by large current electric field sintering. Journal of Materials Engineering, 2019, 47(11): 135-140.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001160      或      http://jme.biam.ac.cn/CN/Y2019/V47/I11/135
[1] WEI X X,TANG J C,YE N,et al. A novel preparation method for W-Cu composite powders[J]. Journal of Alloys and Compounds,2016,661:471-475.
[2] DONG L L,AHANGARKANI M,CHEN W G,et al. Recent progress in development of tungsten-copper composites:fabrication, modification and applications[J]. International Journal of Refractory Metals and Hard Materials,2018,75:30-42.
[3] 赵文杰,王俊勃,王瑞娟,等. 掺杂对Cu/SnO2电触头材料的性能影响[J]. 航空材料学报,2015,35(6):60-64. ZHAO W J,WANG J B,WANG R J,et al. Influence of doping on properties of Cu/SnO2 contact materials[J]. Journal of Aeronautical Materials,2015,35(6):60-64.
[4] SUN A K,WU Z Z,DONG X J,et al. Effects of Ag addition on electrical and thermal properties of Mo-Cu composites[J]. Journal of Alloys and Compounds,2016,657:8-11.
[5] 夏扬,宋月清,崔舜,等. Mo-Cu和W-Cu合金的制备及性能特点[J]. 稀有金属,2008,32(2):240-244. XIA Y,SONG Y Q,CUI S,et al. Preparation and properties of Mo-Cu and W-Cu alloys[J]. Chinese Journal of Rare Metals,2008,32(2):240-244.
[6] 王程成,贺德龙,崔溢. 结构-导电复合材料研究进展[J]. 材料工程,2018,46(9):1-13. WANG C C, HE D L, CUI Y. Research progress in electrically conductive structural composites[J]. Journal of Materials Engineering,2018,46(9):1-13.
[7] 唐亮亮,邝用庚,陈飞雄,等. 钨钼渗铜材料的力学性能和组织研究[J]. 粉末冶金工业,2011,21(3):6-10. TANG L L,KUANG Y G,CHEN F X,et al. Research on the mechanical properties and microstructure of W-Mo-Cu composites[J]. Powder Metallurgy Industry,2011,21(3):6-10.
[8] TANG L L,ZHANG B H,ZHANG D H,et al. Properties and microstructure of W-Mo-Cu composites[C]//The European Powder Metallurgy Association. Proceedings of the International Euro Powder Metallurgy Congress and Exhibition, Euro PM 2012. Brussels:The European Powder Metallurgy Association,2012:1-6.
[9] 梁容海,熊湘君,王伏生. 高钨触头合金的熔浸机理探讨[J]. 矿冶工程,1997,17(2):73-75. LIANG R H,XIONG X J,WANG F S. Infiltration mechanism of high-tungsten contact alloys[J]. Mining and Metallurgical Engineering,1997,17(2):73-75.
[10] 周虹伶,冯可芹,李娅,等. 两种电场快速烧结方法制备W-Cu合金[J]. 工程科学与技术,2017,49(增刊2):244-250. ZHOU H L,FENG K Q,LI Y,et al. Preparation of W-Cu alloy sintered by two methods based on electric field[J]. Advanced Engineering Sciences,2017,49(Suppl 2):244-250.
[11] 李娅,冯可芹,吴金岭,等. 压力对W-Cu合金电场快速烧结的影响[J]. 电子元件与材料,2010,29(1):4-7. LI Y,FENG K Q,WU J L,et al. Effects of pressure on the electric-field-assisted rapid sintering of W-Cu alloy[J]. Electronic Components and Materials,2010,29(1):4-7.
[12] 蔡伯壎. 固体物理基础[M]. 北京:高等教育出版社,1990:420-445. CAI B X. Solid physics foundation[M]. Beijing:Higher Education Press,1990:420-445.
[13] ZHOU H L,FENG K Q,KE S X,et al. Densification and properties investigation of W-Mo-Cu composites prepared by large current electric field sintering with different technologic parameter[J]. Journal of Alloys and Compounds,2018,767:567-574.
[14] 尹邦跃,王零森,方寅初. 纯B4C和掺碳B4C的烧结机制[J]. 硅酸盐学报,2001,29(1):68-71. YIN B Y,WANG L S,FANG Y C. Sintering mechanism of pure and carbon-doped boron carbide[J]. Journal of the Chinese Ceramic Society,2001,29(1):68-71.
[15] KE S X,FENG K Q,ZHOU H L,et al. Sintering process and particles migration mechanism of rapid sintering of W-Cu composites[J].Materials and Manufacturing Processes,2017,32(12):1398-1402.
[16] 王盘鑫. 粉末冶金学[M]. 北京:冶金工业出版社,1997:260-274. WANG P X. Powder metallurgy[M]. Beijing:Powder Metallurgy Industry Press,1997:260-274.
[17] 张益中,谢宏,李昆. WC-10%Co超细硬质合金烧结中表面钴聚集的形成[J]. 硬质合金,2011,28(6):358-363. ZHANG Y Z,XIE H,LI K. Formation of Co-capping during sintering of ultrafine WC-10%Co cemented carbide[J]. Cemented Carbide,2011,28(6):358-363.
[18] 朱松,范景莲,刘涛,等. 细晶W-Cu材料的导电性能[J]. 中国有色金属学报,2010,20(7):1360-1364. ZHU S,FAN J L,LIU T,et al. Electric conductivities of ultrafine W-Cu materials[J].The Chinese Journal of Nonferrous Metals,2010,20(7):1360-1364.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[3] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[4] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[5] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[6] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[7] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[8] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[9] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[12] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[13] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[14] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[15] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn