Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (12): 130-135    DOI: 10.11868/j.issn.1001-4381.2018.001329
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
溶胶-凝胶法制备金刚石/陶瓷结合剂复合烧结体及其性能表征
洪秋, 万隆, 李建伟
湖南大学 材料科学与工程学院, 长沙 410082
Preparation of diamond/vitrified bond composite sintered by sol-gel method and its performance characterization
HONG Qiu, WAN Long, LI Jian-wei
College of Materials Science and Engineering, Hunan University, Changsha 410082, China
全文: PDF(2074 KB)   HTML()
输出: BibTeX | EndNote (RIS)       背景资料
文章导读  
摘要 以金刚石和无机溶胶为原料,采用溶胶-凝胶法制备金刚石/陶瓷结合剂复合粉体,将粉体通过压制、烧结获得金刚石/陶瓷结合剂复合烧结体,利用XRD、SEM、电子万能试验机、洛氏硬度计等对复合烧结体进行性能表征。结果表明:采用溶胶-凝胶法可制备出组织均匀性较好的金刚石/陶瓷结合剂复合粉体,经680℃/2h烧结后试样的抗弯强度、硬度、密度和气孔率分别为58.54MPa,55.8HRB,1.74g/cm3,24.16%;而采用熔融法所制烧结试样的抗弯强度、硬度、密度和气孔率分别为51.32MPa,72.5HRB,1.92g/cm3,21.47%。与熔融法制备的金刚石/陶瓷结合剂磨削盘相比,采用溶胶-凝胶法制备的磨削盘结构均匀,磨削加工的TC4钛合金工件表面磨削质量高,工件表面粗糙度为0.051μm。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪秋
万隆
李建伟
关键词 溶胶-凝胶法金刚石陶瓷结合剂性能    
Abstract:Based on the diamond and inorganic sol, sol-gel(S-G) method was used to prepare diamond/vitrified bond composite powder and then the bulk samples were obtained after the powder was pressed and sintered,and the bond composite powder was characterized by XRD, SEM, electronic universal testing machine, Rockwell hardness tester, etc. The results show that diamond/vitrified bond composite powder with good uniformity can be prepared by S-G method, and the bending strength, Rockwell hardness, volume density and porosity of samples sintered at 680℃/2h are 58.54MPa,55.8HRB,1.74g/cm3and 24.16%, respectively; when these samples were obtained by melting method, the corresponding figures are 51.32MPa, 72.5HRB,1.92g/cm3and 21.47%, respectively. Compared to the melting method, the microstructure of grinding disc prepared by S-G method is uniform and high quality is observed on the machined surface of TC4 titanium alloy, whose Ra reaches 0.051μm.
Key wordssol-gel method    diamond    vitrified bond    property
收稿日期: 2018-11-13      出版日期: 2019-12-17
中图分类号:  TG74  
  TB332  
基金资助: 
通讯作者: 万隆(1956-),男,教授,博士,主要从事磨料磨具方向的研究,联系地址:湖南省长沙市湖南大学材料科学与工程学院(410082),E-mail:wanglong1799@aliyun.com     E-mail: wanglong1799@aliyun.com
引用本文:   
洪秋, 万隆, 李建伟. 溶胶-凝胶法制备金刚石/陶瓷结合剂复合烧结体及其性能表征[J]. 材料工程, 2019, 47(12): 130-135.
HONG Qiu, WAN Long, LI Jian-wei. Preparation of diamond/vitrified bond composite sintered by sol-gel method and its performance characterization. Journal of Materials Engineering, 2019, 47(12): 130-135.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001329      或      http://jme.biam.ac.cn/CN/Y2019/V47/I12/130
[1] 赵凯.工程塑料复杂曲面零件表层跨尺度金属图案精密制造技术[D].大连:大连理工大学,2015. ZHAO K. Precision manufacturing technology for multi-scale metal pattern on engineering plastic parts with complex surface[D].Dalian:Dalian University of Technology,2015.
[2] 王先逵.精密加工和纳米加工高速切削难加工材料的切削加工[M].北京:机械工业出版社,2008. WANG X K. Precision machining and nano-machining, highspeed cutting, machining difficult materials[M].Beijing:Machinery Industry Press,2008.
[3] 尚鲜军,拜英梅,任燕飞.精密阀套零组件制造工艺探讨[J].航空精密制造技术,2018,54(3):52-55. SHANG X J,BAI Y M,REN Y F. Discussion on manufacturing process of precision valve bush component[J]. Aviation Precision Manufacturing Technology,2018,54(3):52-55.
[4] PEI Z J,FISHER G R,LIU J. Grinding of silicon wafers:a review from historical perspectives[J]. International Journal of Machine Tools and Manufacture, 2008,48(12/13):1297-1307.
[5] 闫宁,李学文,赵盟月,等.cBN砂轮在航空发动机零件高效精密加工中的应用[J].金刚石与磨料磨具工程,2015,35(4):15-21. YAN N,LI X W,ZHAO M Y,et al. Application of cBN grinding wheels in high efficiency and precision grinding for aero-engine parts[J].Diamond &Abrasives Mechanical Engineering,2015,35(4):15-21.
[6] ZENG X,GAN Y X. A review of grinding technologies for glass machining[J]. International Journal of Abrasive Technology, 2011,4(3):223-239.
[7] SABRI L,MANSORI EI M.Process variability in honing of cylinder liner with vitrified bonded diamond tools[J].Surface and Coatings Technology,2009,204(6/7):1046-1050.
[8] 郝素叶,万隆,王俊沙,等.喷雾干燥法金刚石-陶瓷结合剂复合烧结体的制备及表征[J].材料工程,2016,44(8):58-63. HAO S Y,WAN L,WANG J S,et al. Synthesis and characterization of diamond-vitrified bond sintered composite by spray-drying method[J]. Journal of Materials Engineering,2016,44(8):58-63.
[9] 赵玉成,王明智,张贝贝,等.纳米金刚石-陶瓷结合剂复合粉体的高分子网络凝胶法制备与烧结[J]. 复合材料学报,2013,30(3):120-124. ZHAO Y C,WANG M Z,ZHANG B B,et al.Preparation and sintering of nanodiamond-vitrified bond composite powders by polyacrylamide gel method[J].Acta Materiae Compositae Sinica,2013,30(3):120-124.
[10] 万隆,张磊欣,刘小磐,等.溶胶-原位凝胶法制备金刚石/LZAS系陶瓷结合剂砂轮的结构与性能[J].粉末冶金材料科学与工程,2016,21(6):939-945. WAN L,ZHANG L X,LIU X P,et al. Microstructure and performance of LZAS vitrified bond/diamond grinding wheel by in-situ sol-gel method[J]. Materials Science and Engineering of Powder Metallurgy,2016,21(6):939-945.
[11] 袁哲俊,王先逵.精密和超精密加工技术[M].北京:机械工业出版社,2016. YUAN Z J,WANG X K. Precision and ultraprecision machining technology[M].Beijing:Machinery Industry Press,2016.
[12] 万隆,时丹,王俊沙,等.硅烷偶联剂对金刚石表面改性研究[J].湖南大学学报(自然科学版),2013,40(4):71-74. WAN L,SHI D,WANG J S,et al.Research on the surface modification of diamond with silane coupling agent[J].Journal of Hunan University(Natural Sciences),2013,40(4):71-74.
[13] 王美,李和胜,李木森,等.IIb型与Ib型金刚石热稳定性比较[J].山东大学学报(工学版),2007,37(6):41-43. WANG M,LI H S,LI M S,et al.Thermal stability comparison of the Ⅱb type and theⅠb type diamond[J].Journal of Shandong University(Engineering Science),2007,37(6):41-43.
[14] QIAO Z J,LI J J,ZHAO N Q,et al.Graphitization and microstructure transformation of nanodiamond to onion-like carbon[J].Scripta Materialia,2006,54(2):225-229.
[15] XIA Y F,ZENG Y P,JIANG D L.Mechanical and dielectric properties of porous Si3N4 ceramics using PMMA as pore former[J].Ceramics International,2011,37:3775-3779.
[16] LV X F,LI Z H,ZHU Y M,et al.Effect of PMMA pore former on microstructure and mechanical properties of vitrified bond cBN grinding wheels[J].Ceramics International,2013,39(2):1893-1899.
[17] 田金方.数理统计与数据分析[M].北京:机械工业出版社,2011. TIAN J F.Mathematical statistics and data analysis[M].Beijing:Machinery Industry Press,2011.
[1] 崔雪, 张松, 张春华, 吴臣亮, 王强, 董世运. 高性能梯度功能材料激光增材制造研究现状及展望[J]. 材料工程, 2020, 48(9): 13-23.
[2] 赵云松, 张迈, 郭小童, 郭媛媛, 赵昊, 刘砚飞, 姜华, 张剑, 骆宇时. 航空发动机涡轮叶片超温服役损伤的研究进展[J]. 材料工程, 2020, 48(9): 24-33.
[3] 陈丹玲, 黄志强, 何新华. Ta掺杂Na0.5Bi4.5Ti4O15陶瓷的显微结构和电性能[J]. 材料工程, 2020, 48(9): 93-99.
[4] 孙昊, 贾凯波, 赵凤光, 张羊换, 任慧平. Mg22Y2Ni10Cu2储氢合金的放氢性能[J]. 材料工程, 2020, 48(9): 100-106.
[5] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[6] 曲敬龙, 易出山, 陈竞炜, 史玉亭, 毕中南, 杜金辉. GH4720Li合金中析出相的研究进展[J]. 材料工程, 2020, 48(8): 73-83.
[7] 胡洁, 董中奇, 沈英明, 王杨, 杨俊雅. Mo元素对LaFe11.5Si1.5磁制冷材料耐腐蚀性能及磁性能的影响[J]. 材料工程, 2020, 48(8): 119-125.
[8] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[9] 张桂源, 李于朋, 宫文彪, 宫明月, 崔恒. Zn对钢/铝异种金属搅拌摩擦焊接头界面组织及性能的影响[J]. 材料工程, 2020, 48(8): 149-156.
[10] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[11] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[12] 班丽卿, 高敏, 庞国耀, 柏祥涛, 李钊, 庄卫东. 富锂锰基Li1.2[Co0.13Ni0.13Mn0.54]O2锂离子正极材料的磷改性研究[J]. 材料工程, 2020, 48(7): 103-110.
[13] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[14] 杨万鹏, 李嘉荣, 刘世忠, 赵金乾, 史振学, 王效光. 一种第三代单晶高温合金中高温横向持久性能[J]. 材料工程, 2020, 48(7): 139-145.
[15] 尹艳丽, 于鹤龙, 周新远, 宋占永, 王红美, 王文宇, 刘晓亭, 徐滨士. 基于正交实验方法的蛇纹石润滑油添加剂摩擦学性能[J]. 材料工程, 2020, 48(7): 146-153.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn