Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (8): 118-124    DOI: 10.11868/j.issn.1001-4381.2018.001454
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
纺丝工艺对T800碳纤维及其复合材料性能的影响
张世杰1, 王汝敏1, 刘宁2, 廖英强2, 程勇2
1. 西北工业大学 理学院, 西安 710072;
2. 西安航天复合材料研究所, 西安 710025
Effect of spinning process on the properties of T800 carbon fiber and its reinforced composite
ZHANG Shi-jie1, WANG Ru-min1, LIU Ning2, LIAO Ying-qiang2, CHENG Yong2
1. School of Science, Northwestern Polytechnical University, Xi'an 710072, China;
2. Xi'an Aerospace Composites Research Institute, Xi'an 710025, China
全文: PDF(2965 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用扫描电子显微镜(SEM)、原子力显微镜(AFM)、X射线光电子能谱仪(XPS)和表面接触角测量仪分别对湿法纺丝(T800HB)与干喷湿纺(T800SC)两种纺丝工艺制备的T800碳纤维表面状态进行表征和分析,采用万能材料试验机对二者的复丝、NOL环及单向板的力学性能进行对比研究。结果表明:湿法纺丝的T800HB碳纤维具有更粗糙的表面,而干喷湿纺T800SC碳纤维具有更高的表面活性,"化学活性"和"机械啮合"的共同作用使得两种碳纤维复合材料具有相近的层间剪切强度。但当复合材料发生破坏时,T800HB碳纤维与树脂间"机械啮合"的主导作用更显著,纤维/树脂结合更紧密,使得其复合材料的断裂呈脆性破坏模式,而T800SC碳纤维与树脂结合则稍弱,呈一定程度的韧性破坏模式。T800SC碳纤维比T800HB碳纤维具有更高的复丝拉伸强度,因而相应地,T800SC碳纤维复合材料NOL环和单向板均有更高的拉伸强度。因此,综合两种不同纺丝工艺碳纤维及其复合材料的力学性能和破坏形貌,相比于T800HB,T800SC碳纤维更适合作为缠绕成型复合材料的增强材料。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张世杰
王汝敏
刘宁
廖英强
程勇
关键词 纺丝工艺T800碳纤维复合材料NOL环力学性能    
Abstract:The surface conditions of the two different T800 carbon fibers by the wetting (T800HB) and the dry jet-wetting spinning processes (T800SC) were characterized and analyzed by scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscope (XPS) and contacting-angle measuring instrument. The mechanical properties of their multifilaments, NOL rings and unidirectional laminates were evaluated by universal material testing machine. Results show that the surface of T800HB by wetting process is rougher, while the surface of T800SC by dry jet-wetting process is more chemical-active. Both chemical interaction and mechanical engagement between fiber and resin matrix result in the similar interlaminar shear strength (ILSS) of T800HB and T800SC. However, when the composite is damaged, the interfacial bonding of T800HB/resin seems tighter dominated by the mechanical engagement, leading to brittle fracture feature of T800HB reinforced composite, while T800SC reinforced composite exhibits ductile fracture feature with weaker interfacial bonding. In addition, the tensile strength of filament of T800SC is higher than that of T800HB. Accordingly, the tensile strength of NOL ring and unidirectional laminate composite of T800SC are higher than those of T800HB. Therefore, in combination of mechanical properties of carbon fibers by two kinds of spinning processes and their reinforced composites, as well as their fracture features, compared with T800HB, T800SC is more suitable to be the reinforcement of the composite fabricated by filament winding process.
Key wordsspinning process    T800 carbon fiber    composite    NOL ring    mechanical property
收稿日期: 2018-12-17      出版日期: 2019-08-22
中图分类号:  TB332  
通讯作者: 张世杰(1979-),男,高工,博士研究生,从事纤维增强聚合物基复合材料的研究,联系地址:西安市101#信箱科研生产部(710025),E-mail:wzym007@163.com     E-mail: wzym007@163.com
引用本文:   
张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
ZHANG Shi-jie, WANG Ru-min, LIU Ning, LIAO Ying-qiang, CHENG Yong. Effect of spinning process on the properties of T800 carbon fiber and its reinforced composite. Journal of Materials Engineering, 2019, 47(8): 118-124.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2018.001454      或      http://jme.biam.ac.cn/CN/Y2019/V47/I8/118
[1] ZHONG Y J,BIAN W F,WANG M L. The effect of nanostr-ucture on the tensile modulus of carbon fibers[J]. Journal of Materials Science,2016,51(7):3564-3579.
[2] WANG C, DONG X,WANG Q. Effect of coagulation on the structure and property of PAN nascent fibers during dry jet wet-spinning[J].Journal of Physics D:Applied Physics,2009,16(6):719-724.
[3] NEWCOMB B A. Processing,structure,and properties of carbon fibers[J]. Composite Part A:Applied Science and Manufact-uring,2016,91:262-282.
[4] 向小波,蒋永凡,程勇. 聚丙烯腈基碳纤维及其在固体火箭发动机壳体上的应用[J]. 纤维复合材料,2015(3):23-28. XIANG X B,JIANG Y F,CHENG Y. Review of the application of polyacrylonitrile-based carbon fiber in solid rocket motor cases[J]. Fiber Composites,2015(3):23-28.
[5] OBERLIN A. Carbonization and graphitization[J]. Carbon, 1984,22(6):521-541.
[6] 徐永新,顾轶卓,马全胜,等. 几种国产高模碳纤维特性实验分析[J]. 复合材料学报, 2016,33(9):1905-1914. XU Y X,GU Y Z, MA Q S,et al. Experimental analysis of properties of several domestic high-modulus carbon fibers[J]. Acta Materiae Compositae Sinica, 2016, 33(9):1905-1914.
[7] 顾红星,王浩静,张淑斌,等. HKT800碳纤维微观结构与性能[J].材料科学与工艺,2016,24(3):45-49. GU H X,WANG H J,ZHANG S B,et al. Microstructure and properties of HKT800 carbon fibers[J]. Materials Science & Technology,2016,24(3):45-49.
[8] 井敏,谭婷婷,王成国,等. PAN基碳纤维的微观结构与力学性能相关性分析[J].航空材料学报,2013,33(1):78-84. JING M,TAN T T,WANG C G,et al. Correlation between microstructure and mechanical properties of PAN-based carbon fiber[J]. Journal of Aeronautical Materials,2013,33(1):78-84.
[9] 钟云娇,边文凤. PAN基碳纤维微晶结构对拉伸强度的影响[J].材料工程,2017,45(12):37-42. ZHONG Y J,BIAN W F. Effect of crystallites structure of PAN-based carbon fibers on tensile strength[J]. Journal of Materials Engineering,2017,45(12):37-42.
[10] KOVARSKⅡ A L,KASPAROV V V, KRIVANDIN A V,et al. EPR spectroscopic and X-Ray diffraction studies of carbon fibers with different mechanical properties[J]. Russian Journal of Physical Chemistry,2017,11(2):233-241.
[11] LI W,LONG D, MIYAWAKI J,et al. Structural features of polyacrylonitrile-based carbon fibers[J]. Journal of Materials Science,2011,47(2):919-928.
[12] XU J,AN Q, CHEN M. Drilling machinability evaluation on new developed high-strength T800S/250F CFRP laminates[J]. International Journal of Precision Engineering and Manufact-uring,2013,14(10):1687-1696.
[13] LEE J,SOUTIS C. Thickness effect on the compressive strength of T800/924C carbon fiber/epoxy laminates[J]. Composite Part A:Applied Science and Manufacturing,2005,36(2):213-227.
[14] WANG F,ZHANG B,MA J,et al. Computation of the distrib-ution of the fiber-matrix interface cracks in the edge trimming of CFRP[J]. Applied Composite Materials,2019,26(1):159-186.
[15] 贺福.高性能碳纤维原丝与干喷湿纺[J].高科技纤维与应用,2004,29(4):6-12. HE F. Precursors for high performance carbon fibers and Dry-Jet wet spinning[J]. Hi-tech Fiber & Application,2004,29(4):6-12.
[16] 刘福杰,范立东,王浩静,等.高强度炭纤维微观结构分析及力学性能的比较[J].功能材料, 2007, 38(10):1723-1726. LIU F J, FAN L D,WANG H J, et al. Study of the microstructure and the mechanical properties of high strength PAN-based carbon fibers[J]. Journal of Functional Materials, 2007, 38(10):1723-1726.
[17] 王斌,金志浩,刘爱华,等. PBO纤维复合材料的拉伸性能研究[J].宇航材料工艺, 2004,34(2):58-61. WANG B, JIN Z H, LIU A H, et al. Tensile properties of high performance PBO fibre[J]. Composites Aerospace Materials & Technology, 2004,34(2):58-610.
[18] DILSIZ N,WlGHTMAN J P. Surface analysis of unsized and sized carbon fibers[J].Carbon,1999,37(7):1105-1114.
[19] LIU J, TIAN Y, CHEN Y, et a1.Interfacial and mechanical properties of carbon fibers modified by electrochemical oxidation in(NH4HCO3)/(NH4)2CrO4·H2O aqueous compound solution[J]. Applied Surface Science,2010,256(21):6199-6204.
[1] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[2] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[3] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[4] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
[5] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[6] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
[7] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[8] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[9] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[10] 刘冠旗, 王春旭, 刘少尊, 厉勇, 谭成文, 刘志超. 新型高密度合金的组织与性能[J]. 材料工程, 2019, 47(8): 154-160.
[11] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[12] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[13] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[14] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
[15] 王飞云, 金建军, 江志华, 王晓震, 胡春文. 热处理温度对新型马氏体时效不锈钢微观组织和性能的影响[J]. 材料工程, 2019, 47(6): 152-160.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn