Please wait a minute...
 
2222材料工程  2019, Vol. 47 Issue (10): 126-132    DOI: 10.11868/j.issn.1001-4381.2019.000050
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
高强隔热刚玉-镁铝尖晶石-莫来石多孔陶瓷材料的制备
马林(), 文丹妮
西安建筑科技大学 材料科学与工程学院, 西安 710055
Preparation of corundum-spinel-mullite porous ceramics with high strength and thermal insulation
Lin MA(), Dan-ni WEN
College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
全文: PDF(2015 KB)   HTML ( 10 )  
输出: BibTeX | EndNote (RIS)      
摘要 

以氧化铝、石英粉和电熔镁砂为主要原料,以纸浆废液为结合剂,通过原位反应烧结制备复相高强隔热陶瓷,研究MgO添加量对所制备多孔陶瓷的显气孔率、抗折强度、耐压强度和抗热震性能的影响。采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电子万能试验机对材料的物相组成、显微结构和力学性能进行表征,并对多孔陶瓷的显气孔率和抗热震性能进行测试。结果表明:5%(质量分数)电熔镁砂与氧化铝、石英粉在1450℃下原位反应烧结3h可制备得到刚玉-镁铝尖晶石-莫来石多孔复相陶瓷,耐压强度达270.25MPa,抗折强度超过45MPa,同时显气孔率达26.46%,常温导热系数为1.469W·m-1·K-1,隔热性能良好,且3次热震后的残余抗折强度保持率超过27%,是极具应用前景的工业窑炉内衬材料。其中MgO含量变化会直接影响该多孔陶瓷三相组成、相形态、气孔孔径及分布,使得多孔陶瓷抗折强度、耐压强度和抗热震性能呈现非单调变化的规律。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马林
文丹妮
关键词 刚玉-镁铝尖晶石-莫来石多孔陶瓷高强隔热炉衬    
Abstract

Composite ceramics with high strength and thermal insulation were fabricated via an in-situ reaction sintering method using alumina, silica and fused magnesia as starting raw materials, and sulphite liquor as binders. The effect of MgO addition on apparent porosity, flexural and compressive strength, and thermal shock resistance of samples was investigated. The phase compositions, microstructure characteristics and mechanical properties were characterized by means of X-ray diffraction (XRD), scanning electronic microscopy (SEM) and electronic universal testing machine, the apparent porosity and thermal shock resistance of porous ceramics were also characterized. The results show that corundum-spinel-mullite porous composite ceramics are fabricated with 5%(mass fraction) fused magnesia, alumina, and silica sintering at 1450℃ for 3h via an in-situ reaction. The porous ceramics possess high compressive strength of 270.25 MPa, high flexural strength of over 45MPa and apparent porosity of 26.46%. It exhibits good thermal insulation performance with a thermal conductivity of 1.469W·m-1·K-1 at room temperature, and the retention percent of residual flexural strength exceeds 27% after 3 thermal shocks. It is a promising lining material for kilns. The change of MgO content influences directly the three-phase compositions, phase morphology, pores size and distribution, which leads to non-monotonic variation of flexural strength, compressive strength and thermal shock resistance of the porous ceramics.

Key wordscorundum-spinel-mullite    porous ceramic    high strength-thermal insulation    kiln lining
收稿日期: 2019-01-15      出版日期: 2019-10-12
中图分类号:  TQ175  
通讯作者: 马林     E-mail: malin@xauat.edu.cn
作者简介: 马林(1959-), 男, 副教授, 主要从事高温陶瓷材料的研究, 联系地址:陕西省西安市碑林区雁塔路13号西安建筑科技大学材料科学与工程学院(710055), E-mail:malin@xauat.edu.cn
引用本文:   
马林, 文丹妮. 高强隔热刚玉-镁铝尖晶石-莫来石多孔陶瓷材料的制备[J]. 材料工程, 2019, 47(10): 126-132.
Lin MA, Dan-ni WEN. Preparation of corundum-spinel-mullite porous ceramics with high strength and thermal insulation. Journal of Materials Engineering, 2019, 47(10): 126-132.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000050      或      http://jme.biam.ac.cn/CN/Y2019/V47/I10/126
Fig.1  试样在1450℃烧结并保温3h的XRD图谱
Fig.2  试样在1450℃烧结并保温3h的微观结构形貌
(a)0%MgO; (b)5%MgO; (c)10%MgO; (d)15%MgO
Fig.3  试样的显气孔率和体积密度变化曲线
Material Thermal conductivity/
(W·m-1·K-1)
Corundum-spinel-mullite sample in this experiment 1.469(25℃)
Corundum[25] 30.1(100℃),6.3(1000℃)
Spinel[25] 15.1(100℃),5.9(1000℃)
Mullite[25] 5.9(100℃),3.8(1000℃)
Table 1  复相陶瓷试样(5%MgO)与刚玉、尖晶石、莫来石三者导热系数对比
Fig.4  试样的抗折强度和耐压强度变化曲线
Fig.5  试样经3次热震后的残余抗折强度
1 LUO Z W , LIANG H Z , QIN C C , et al. Sintering behavior, microstructures and mechanical properties of porous CaO-Al2O3-SiO2-Si3N4 glass-ceramics[J]. Journal of Alloys and Compounds, 2019, 773, 71- 77.
doi: 10.1016/j.jallcom.2018.09.231
2 汪长安, 郎莹, 胡良发, 等. 轻质、高强、隔热多孔陶瓷材料的研究进展[J]. 陶瓷学报, 2017, 38 (3): 287- 296.
2 WANG C A , LANG Y , HU L F , et al. Research progress on lightweight and high strength heat-insulating porous ceramics[J]. Journal of Ceramics, 2017, 38 (3): 287- 296.
3 XU L F , XI X A , ZHU W L , et al. Investigation on the influence factors for preparing mullite-whiskerstructured porous ceramic[J]. Journal of Alloys and Compounds, 2015, 649, 739- 745.
doi: 10.1016/j.jallcom.2015.07.154
4 马林, 吕戌生, 薛娜, 等. 堇青石-莫来石复相陶瓷制备[J]. 西安建筑科技大学学报(自然科学版), 2008, 40 (6): 756- 758.
doi: 10.3969/j.issn.1006-7930.2008.06.004
4 MA L , LV X S , XUE N , et al. Preparation of cordierite-mullite composite ceramics[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2008, 40 (6): 756- 758.
doi: 10.3969/j.issn.1006-7930.2008.06.004
5 彭美华, 程西云, 周彪, 等. CNTs-Al2O3多孔陶瓷复合材料的制备与性能[J]. 材料工程, 2016, 44 (6): 117- 122.
5 PENG M H , CHENG X Y , ZHOU B , et al. Preparation and properties of CNTs-Al2O3 porous ceramic composites[J]. Journal of Materials Engineering, 2016, 44 (6): 117- 122.
6 TAVANGARIA N , EMADI R . Synthesis and characterization of spinel-forsterite nanocomposites[J]. Ceramics International, 2011, 37, 2543- 2548.
doi: 10.1016/j.ceramint.2011.03.056
7 WAHSH M M S , KHATTAB R M , KHALIL N M , et al. Fabrication and technological properties of nanoporous spinel/forsterite/zirconia ceramic composites[J]. Materials & Design, 2014, 53, 561- 567.
8 马林, 王家滨, 折启耀, 等. 二氧化硅多孔陶瓷材料的制备与性能[J]. 中国陶瓷, 2011, 47 (9): 45- 47.
8 MA L , WANG J B , SHE Q Y , et al. Preparation and properties of porous silica ceramics[J]. China Ceramics, 2011, 47 (9): 45- 47.
9 LI L P , Y Y , FAN X Z , et al. Low-temperature synthesis of calcium-hexaluminate/magnesium-aluminum spinel composite ceramics[J]. Journal of the European Ceramic Society, 2015, 35, 2923- 2931.
doi: 10.1016/j.jeurceramsoc.2015.03.041
10 XU G G , MA Y H , CUI H Z , et al. Preparation of porous mullite-corundum ceramics with controlled pore size using bioactive yeast as pore-forming agent[J]. Materials Letters, 2014, 116, 349- 352.
doi: 10.1016/j.matlet.2013.11.067
11 HUA K H , SHUI A Z , XU L F , et al. Fabrication and characterization of anorthite-mullite-corundum porous ceramics from construction waste[J]. Ceramics International, 2016, 42, 6080- 6087.
doi: 10.1016/j.ceramint.2015.12.165
12 DENG X G , WANG J K , LIU J H , et al. Low cost foam-gelcasting preparation and characterization of porous magnesium aluminate spinel (MgAl2O4) ceramics[J]. Ceramics International, 2016, 42, 18215- 18222.
doi: 10.1016/j.ceramint.2016.08.145
13 SCHNEIDER H , SCHREUER J , HILDMANN B . Structure and properties of mullite-a review[J]. Journal of the European Ceramic Society, 2008, 28, 329- 344.
doi: 10.1016/j.jeurceramsoc.2007.03.017
14 DENG X G , WANG J K , LIU J H , et al. Preparation and characterization of porous mullite ceramics via foam-gel casting[J]. Ceramics International, 2015, 41, 9009- 9017.
doi: 10.1016/j.ceramint.2015.03.237
15 徐晓虹, 马雄华, 吴建锋, 等. 刚玉-莫来石-镁铝尖晶石复合陶瓷的原位合成及热震行为[J]. 硅酸盐学报, 2012, 40 (10): 1387- 1393.
15 XU X H , MA X H , WU J F , et al. In-situ preparation and thermal shock behavior of corundum-mullite-magnesium aluminate spinel composition ceramic[J]. Journal of the Chinese Ceramic Society, 2012, 40 (10): 1387- 1393.
16 黄春舒, 刘家臣, 董学, 等. 莫来石基轻质、气密型隔热陶瓷制备[J]. 稀有金属材料与工程, 2011, 40 (增刊1): 29- 31.
16 HUANG C S , LIU J C , DONG X , et al. Preparation of mullite-based light-weight, hermetic-typed heat-insulating ceramics[J]. Rare Metal Materials and Engineering, 2011, 40 (Suppl 1): 29- 31.
17 RAFAEL S , LEANDRO F . Porous co-continuous mullite structures obtained from sintered aluminum hydroxide and synthetic amorphous silica[J]. Journal of the European Ceramic Society, 2017, 37, 2849- 2856.
doi: 10.1016/j.jeurceramsoc.2017.03.017
18 BRAM G , JAGANATHA R G , SUNDARARAJAN G , et al. Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel[J]. Ceramics International, 2010, 36 (2): 473- 482.
doi: 10.1016/j.ceramint.2009.09.002
19 田玉明, 陈战考, 周少鹏, 等. 成型压力与热处理温度对合成镁铝尖晶石材料的影响[J]. 耐火材料, 2014, 48 (3): 201- 204.
doi: 10.3969/j.issn.1001-1935.2014.03.010
19 TIAN Y M , CHEN Z K , ZHOU S P , et al. Effects of molding pressure and heat treatment temperature on synthesis of magnesium aluminate spinel material[J]. Refractories, 2014, 48 (3): 201- 204.
doi: 10.3969/j.issn.1001-1935.2014.03.010
20 MOHAN S K , SARKAR R . A comparative study on the effect of different additives on the formation and densification of magnesium aluminate spinel[J]. Ceramics International, 2016, 42, 13932- 13943.
doi: 10.1016/j.ceramint.2016.05.206
21 VITORINO N , FREITAS C , KOVALEVSKY A V , et al. Cellular MgAl2O4 spinels prepared by reactive sintering of emulsified suspensions[J]. Materials Letters, 2016, 164, 190- 193.
doi: 10.1016/j.matlet.2015.10.169
22 WANG F , YE J K , HE G , et al. Preparation and characterization of porous MgAl2O4 spinel ceramic supports from bauxite and magnesite[J]. Ceramics International, 2015, 41, 7374- 7380.
doi: 10.1016/j.ceramint.2015.02.044
23 NORLAND M R , VEITH D L . Revegetation of coarse taconite iron ore tailing using municipal solid waste compost[J]. Journal of Hazardous Materials, 1995, 41 (2/3): 123- 134.
24 李守巨, 刘迎曦, 于贺. 多孔材料等效导热系数与分形维数关系的数值模拟研究[J]. 岩土力学, 2009, 30 (5): 1465- 1470.
doi: 10.3969/j.issn.1000-7598.2009.05.049
24 LI S J , LIU Y X , YU H . Numerical simulation of relationship between thermal conductivity of porous material and fractal dimension[J]. Rock and Soil Mechanics, 2009, 30 (5): 1465- 1470.
doi: 10.3969/j.issn.1000-7598.2009.05.049
25 金志浩, 高积强, 乔冠军. 工程陶瓷材料[M]. 西安: 西安交通大学出版社, 2000.
25 JIN Z H , GAO J Q , QIAO G J . Engineering ceramic materials[M]. Xi'an: Xi'an Jiaotong University Press, 2000.
26 顾幸勇, 任永国, 董伟霞. MgO对原位烧结含锆莫来石材料性能影响的研究[J]. 中国陶瓷, 2006, 42 (8): 17- 23.
doi: 10.3969/j.issn.1001-9642.2006.08.005
26 GU X Y , REN Y G , DONG W X . Study on the effect of magnesia to ZTM by reactive sintering in situ[J]. China Ceramics, 2006, 42 (8): 17- 23.
doi: 10.3969/j.issn.1001-9642.2006.08.005
[1] 罗萌, 向阳, 彭志航, 曹峰. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72.
[2] 林洪玉, 李晓鸿, 陈璐, 杨波, 姚森, 曾小州, 李安林, 黎阳. 硅溶胶添加对氧化铝多孔陶瓷烧结性能的影响[J]. 材料工程, 2021, 49(5): 151-156.
[3] 蒋浩然, 林硕, 张康飞, 王海燕, 王佳齐, 何秀兰. ZrO2/Al2O3多孔陶瓷的制备与力学性能[J]. 材料工程, 2021, 49(5): 157-162.
[4] 张颖, 王宁, 杜艺, 石鑫, 王伟超, 张军战. 冷冻浇注制备多孔陶瓷的研究进展[J]. 材料工程, 2019, 47(7): 26-34.
[5] 陈敬炎, 吴甲民, 陈安南, 肖欢, 李国锐, 刘梦月, 李晨辉, 史玉升. 基于激光选区烧结的煤系高岭土多孔陶瓷的制备及其性能[J]. 材料工程, 2018, 46(7): 36-43.
[6] 彭美华, 程西云, 周彪, 严茂伟, 张建锋. CNTs-Al2O3多孔陶瓷复合材料的制备与性能[J]. 材料工程, 2016, 44(6): 117-122.
[7] 杨阳, 赵宏生, 刘中国, 张凯红, 李自强. 成型温度对多孔SiC陶瓷性能的影响[J]. 材料工程, 2011, 0(5): 58-61.
[8] 孙雨薇, 王树彬, 张健. CBS涂层对多孔氮化硅高温高频介电性能的影响[J]. 材料工程, 2011, 0(2): 42-45.
[9] 马壮, 张利军, 于晓东, 王扬卫. Y2O3对反应烧结制备Si3N4多孔陶瓷的影响[J]. 材料工程, 2009, 0(3): 6-8.
[10] 马彦, 马青松, 陈朝辉. 先驱体转化法制备多孔陶瓷的发展现状[J]. 材料工程, 2007, 0(3): 62-66.
[11] 时利民, 赵宏生, 闫迎辉, 唐春和. 开孔多孔陶瓷的制备技术[J]. 材料工程, 2005, 0(12): 57-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn