Composite ceramics with high strength and thermal insulation were fabricated via an in-situ reaction sintering method using alumina, silica and fused magnesia as starting raw materials, and sulphite liquor as binders. The effect of MgO addition on apparent porosity, flexural and compressive strength, and thermal shock resistance of samples was investigated. The phase compositions, microstructure characteristics and mechanical properties were characterized by means of X-ray diffraction (XRD), scanning electronic microscopy (SEM) and electronic universal testing machine, the apparent porosity and thermal shock resistance of porous ceramics were also characterized. The results show that corundum-spinel-mullite porous composite ceramics are fabricated with 5%(mass fraction) fused magnesia, alumina, and silica sintering at 1450℃ for 3h via an in-situ reaction. The porous ceramics possess high compressive strength of 270.25 MPa, high flexural strength of over 45MPa and apparent porosity of 26.46%. It exhibits good thermal insulation performance with a thermal conductivity of 1.469W·m-1·K-1 at room temperature, and the retention percent of residual flexural strength exceeds 27% after 3 thermal shocks. It is a promising lining material for kilns. The change of MgO content influences directly the three-phase compositions, phase morphology, pores size and distribution, which leads to non-monotonic variation of flexural strength, compressive strength and thermal shock resistance of the porous ceramics.
马林, 文丹妮. 高强隔热刚玉-镁铝尖晶石-莫来石多孔陶瓷材料的制备[J]. 材料工程, 2019, 47(10): 126-132.
Lin MA, Dan-ni WEN. Preparation of corundum-spinel-mullite porous ceramics with high strength and thermal insulation. Journal of Materials Engineering, 2019, 47(10): 126-132.
LUO Z W , LIANG H Z , QIN C C , et al. Sintering behavior, microstructures and mechanical properties of porous CaO-Al2O3-SiO2-Si3N4 glass-ceramics[J]. Journal of Alloys and Compounds, 2019, 773, 71- 77.
doi: 10.1016/j.jallcom.2018.09.231
WANG C A , LANG Y , HU L F , et al. Research progress on lightweight and high strength heat-insulating porous ceramics[J]. Journal of Ceramics, 2017, 38 (3): 287- 296.
3
XU L F , XI X A , ZHU W L , et al. Investigation on the influence factors for preparing mullite-whiskerstructured porous ceramic[J]. Journal of Alloys and Compounds, 2015, 649, 739- 745.
doi: 10.1016/j.jallcom.2015.07.154
MA L , LV X S , XUE N , et al. Preparation of cordierite-mullite composite ceramics[J]. Journal of Xi'an University of Architecture & Technology (Natural Science Edition), 2008, 40 (6): 756- 758.
doi: 10.3969/j.issn.1006-7930.2008.06.004
PENG M H , CHENG X Y , ZHOU B , et al. Preparation and properties of CNTs-Al2O3 porous ceramic composites[J]. Journal of Materials Engineering, 2016, 44 (6): 117- 122.
6
TAVANGARIA N , EMADI R . Synthesis and characterization of spinel-forsterite nanocomposites[J]. Ceramics International, 2011, 37, 2543- 2548.
doi: 10.1016/j.ceramint.2011.03.056
7
WAHSH M M S , KHATTAB R M , KHALIL N M , et al. Fabrication and technological properties of nanoporous spinel/forsterite/zirconia ceramic composites[J]. Materials & Design, 2014, 53, 561- 567.
MA L , WANG J B , SHE Q Y , et al. Preparation and properties of porous silica ceramics[J]. China Ceramics, 2011, 47 (9): 45- 47.
9
LI L P , Y Y , FAN X Z , et al. Low-temperature synthesis of calcium-hexaluminate/magnesium-aluminum spinel composite ceramics[J]. Journal of the European Ceramic Society, 2015, 35, 2923- 2931.
doi: 10.1016/j.jeurceramsoc.2015.03.041
10
XU G G , MA Y H , CUI H Z , et al. Preparation of porous mullite-corundum ceramics with controlled pore size using bioactive yeast as pore-forming agent[J]. Materials Letters, 2014, 116, 349- 352.
doi: 10.1016/j.matlet.2013.11.067
11
HUA K H , SHUI A Z , XU L F , et al. Fabrication and characterization of anorthite-mullite-corundum porous ceramics from construction waste[J]. Ceramics International, 2016, 42, 6080- 6087.
doi: 10.1016/j.ceramint.2015.12.165
12
DENG X G , WANG J K , LIU J H , et al. Low cost foam-gelcasting preparation and characterization of porous magnesium aluminate spinel (MgAl2O4) ceramics[J]. Ceramics International, 2016, 42, 18215- 18222.
doi: 10.1016/j.ceramint.2016.08.145
13
SCHNEIDER H , SCHREUER J , HILDMANN B . Structure and properties of mullite-a review[J]. Journal of the European Ceramic Society, 2008, 28, 329- 344.
doi: 10.1016/j.jeurceramsoc.2007.03.017
14
DENG X G , WANG J K , LIU J H , et al. Preparation and characterization of porous mullite ceramics via foam-gel casting[J]. Ceramics International, 2015, 41, 9009- 9017.
doi: 10.1016/j.ceramint.2015.03.237
XU X H , MA X H , WU J F , et al. In-situ preparation and thermal shock behavior of corundum-mullite-magnesium aluminate spinel composition ceramic[J]. Journal of the Chinese Ceramic Society, 2012, 40 (10): 1387- 1393.
HUANG C S , LIU J C , DONG X , et al. Preparation of mullite-based light-weight, hermetic-typed heat-insulating ceramics[J]. Rare Metal Materials and Engineering, 2011, 40 (Suppl 1): 29- 31.
17
RAFAEL S , LEANDRO F . Porous co-continuous mullite structures obtained from sintered aluminum hydroxide and synthetic amorphous silica[J]. Journal of the European Ceramic Society, 2017, 37, 2849- 2856.
doi: 10.1016/j.jeurceramsoc.2017.03.017
18
BRAM G , JAGANATHA R G , SUNDARARAJAN G , et al. Influence of processing route on microstructure and mechanical properties of MgAl2O4 spinel[J]. Ceramics International, 2010, 36 (2): 473- 482.
doi: 10.1016/j.ceramint.2009.09.002
TIAN Y M , CHEN Z K , ZHOU S P , et al. Effects of molding pressure and heat treatment temperature on synthesis of magnesium aluminate spinel material[J]. Refractories, 2014, 48 (3): 201- 204.
doi: 10.3969/j.issn.1001-1935.2014.03.010
20
MOHAN S K , SARKAR R . A comparative study on the effect of different additives on the formation and densification of magnesium aluminate spinel[J]. Ceramics International, 2016, 42, 13932- 13943.
doi: 10.1016/j.ceramint.2016.05.206
21
VITORINO N , FREITAS C , KOVALEVSKY A V , et al. Cellular MgAl2O4 spinels prepared by reactive sintering of emulsified suspensions[J]. Materials Letters, 2016, 164, 190- 193.
doi: 10.1016/j.matlet.2015.10.169
22
WANG F , YE J K , HE G , et al. Preparation and characterization of porous MgAl2O4 spinel ceramic supports from bauxite and magnesite[J]. Ceramics International, 2015, 41, 7374- 7380.
doi: 10.1016/j.ceramint.2015.02.044
23
NORLAND M R , VEITH D L . Revegetation of coarse taconite iron ore tailing using municipal solid waste compost[J]. Journal of Hazardous Materials, 1995, 41 (2/3): 123- 134.
LI S J , LIU Y X , YU H . Numerical simulation of relationship between thermal conductivity of porous material and fractal dimension[J]. Rock and Soil Mechanics, 2009, 30 (5): 1465- 1470.
doi: 10.3969/j.issn.1000-7598.2009.05.049
25
金志浩, 高积强, 乔冠军. 工程陶瓷材料[M]. 西安: 西安交通大学出版社, 2000.
25
JIN Z H , GAO J Q , QIAO G J . Engineering ceramic materials[M]. Xi'an: Xi'an Jiaotong University Press, 2000.
GU X Y , REN Y G , DONG W X . Study on the effect of magnesia to ZTM by reactive sintering in situ[J]. China Ceramics, 2006, 42 (8): 17- 23.
doi: 10.3969/j.issn.1001-9642.2006.08.005