Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 38-45    DOI: 10.11868/j.issn.1001-4381.2019.000284
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响
陈航1,2,3, 弭光宝1,3, 李培杰2, 王旭东1,3, 黄旭1, 曹春晓1
1. 中国航发北京航空材料研究院 先进钛合金航空科技重点实验室, 北京 100095;
2. 清华大学 新材料国际研发中心, 北京 100084;
3. 北京市石墨烯及应用工程技术研究中心, 北京 100095
Effects of graphene oxide on microstructure and mechanical properties of 600℃ high temperature titanium alloy
CHEN Hang1,2,3, MI Guang-bao1,3, LI Pei-jie2, WANG Xu-dong1,3, HUANG Xu1, CAO Chun-xiao1
1. Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084, China;
3. Beijing Engineering Research Center of Graphene and Application, Beijing 100095, China
全文: PDF(11309 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用控温搅拌混合和热等静压等方法,制备添加氧化石墨烯的600℃高温钛合金复合材料。通过金相观察、能谱和物相分析以及拉伸性能实验,研究复合材料的微观组织和力学性能。结果表明:氧化石墨烯添加量为0.3%(质量分数,下同)时,在600℃高温钛合金粉末中分布比较均匀,二者之间的作用方式主要为物理吸附;与未添加氧化石墨烯的合金相比,添加0.3%氧化石墨烯的复合材料的显微组织得到明显细化,α相的平均尺寸下降约36%,室温抗拉强度和屈服强度分别提高7.8%和10.4%,硬度提高25.6%。氧化石墨烯对600℃高温钛合金的强化机理主要为细晶强化、位错强化以及促进(TiZr)6Si3颗粒析出引起的第二相强化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈航
弭光宝
李培杰
王旭东
黄旭
曹春晓
关键词 氧化石墨烯600℃高温钛合金复合材料微观组织力学性能    
Abstract:The 600℃ high temperature titanium alloy composite with graphene oxide addition was prepared by temperature-controlled mixing method and hot isostatic pressing. Microstructure and mechanical properties of composite were studied by metallographic observation, energy spectrum analysis, phase analysis and tensile test. The results show that graphene oxides are dispersed uniformly in the 600℃ high temperature titanium alloy powder when the content of graphene oxide is 0.3%(mass fraction) and the main mode of action is physical adsorption. Compared with the alloy without graphene oxide, the microstructure of the composite with 0.3% graphene oxide is obviously refined, and the average size of equiaxed alpha phase is reduced by 36%. Meanwhile, the average room temperature tensile strength and yield strength increase by 7.8% and 10.4% respectively and Vickers hardness increases by 25.6%. The strengthening mechanisms of graphene oxide on 600℃ high temperature titanium alloy mainly include grain refinement strengthening,dislocation streng-thening and precipitation strengthening of the (TiZr)6Si3 second-phase.
Key wordsgraphene oxide    600℃ high temperature titanium alloy    composite    microstructure    mech-anical property
收稿日期: 2019-03-27      出版日期: 2019-09-18
中图分类号:  TG146.2  
通讯作者: 弭光宝(1981-),男,高级工程师,博士,主要从事航空发动机高温钛合金及其纳米复合材料、阻燃性能等方面研究,联系地址:北京市81信箱15分箱(100095),E-mail:miguangbao@163.com     E-mail: miguangbao@163.com
引用本文:   
陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
CHEN Hang, MI Guang-bao, LI Pei-jie, WANG Xu-dong, HUANG Xu, CAO Chun-xiao. Effects of graphene oxide on microstructure and mechanical properties of 600℃ high temperature titanium alloy. Journal of Materials Engineering, 2019, 47(9): 38-45.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000284      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/38
[1] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
[2] BALANDIN A A,GHOSH S,BAO W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
[3] ZHU Y W,MURALI S,CAI W W,et al.Graphene and graphene oxide:synthesis, properties, and applications[J].Advanced Mat-erials,2010,22(35):3906-3924.
[4] 洪起虎,燕绍九,杨程,等.氧化石墨烯/铜基复合材料的微观结构及力学性能[J].材料工程,2016,44(9):1-7. HONG Q H,YAN S J,YANG C,et al.Microstructure and mechanical properties of graphene oxide/copper composites[J].Journal of Materials Engineering,2016,44(9):1-7.
[5] ZHANG H P,XU C,XIAO W L,et al.Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion[J].Materials Science and Engineering:A,2016,658:8-15.
[6] RASHAD M,PAN F S,TANG A T,et al.Development of magnesium-graphene nanoplatelets composite[J].Journal of Composite Materials,2015,49(3):285-293.
[7] RASHAD M,PAN F S,ASIF M,et al.Improved mechanical properties of magnesium-graphene composites with copper-graph-ene hybrids[J].Materials Science and Technology,2015,31(12):1452-1461.
[8] 吉传波,王晓峰,邹金文,等.石墨烯增强镍基粉末高温合金复合材料的力学性能[J].材料工程,2017,45(3):1-6. JI C B,WANG X F,ZOU J W,et al.Mechanical properties of graphene reinforced nickel-based P/M superalloy[J].Journal of Materials Engineering,2017,45(3):1-6.
[9] ZHANG X J,SONG F,WEI Z P,et al.Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J].Materials Science and Engineering:A,2017,705:153-159.
[10] NIU B,ZHAO K,ZHANG F,et al.Microstructure and properties of graphene/titanium composite materials prepared by plasma activated sintering[J].Science of Advanced Materials,2017,9:1126-1130.
[11] SONG Y,CHEN Y,LIU W W,et al.Microscopic mechanical properties of titanium composites containing multi-layer grap-hene nanofillers[J].Materials & Design,2016,109:256-263.
[12] MU X N,ZHANG H M,CAI H N,et al.Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J].Materials Science and Engineering:A,2017,687:164-174.
[13] 蔡建明,弭光宝,高帆,等.航空发动机用先进高温钛合金材料技术研究与发展[J].材料工程,2016,44(8):1-10. CAI J M,MI G B,GAO F,et al.Research and development of some advanced high temperature titanium alloys for aero-engine[J].Journal of Materials Engineering,2016,44(8):1-10.
[14] 邝泉波,邹黎明,蔡一湘,等.等离子旋转电极雾化法制备高品质Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn合金粉末[J].材料工程,2017,45(10):39-46. KUANG Q B,ZOU L M,CAI Y X,et al.Preparation of high quality Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn alloy powder by plasma rotating electrode process[J].Journal of Materials Engineering,2017,45(10):39-46.
[15] PARK S,AN J,POTTS J R,et al.Hydrazine-reduction of graphite-and graphene oxide[J].Carbon,2011,49(9):3019-3023.
[16] LEI Z B,LU L,ZHAO X S.The electrocapacitive properties of graphene oxide reduced by urea[J]. Energy and Environmental Science,2012,5(4):6391-6399.
[17] ACIK M,LEE G,MATTEVI C,et al.Unusual infrared-absorption mechanism in thermally reduced graphene oxide[J].Nature Materials,2010,9(10):840-845.
[18] KNACKE O,KUBASCHEWSKI O,HESSELMAM K.Therm-ochemical properties of inorganic substances[M].New York,US:Springer-Verlag,1991.
[19] 辛社伟,洪权,卢亚锋,等.Ti600高温钛合金600℃下组织稳定性研究[J].稀有金属材料与工程,2010,39(11):1918-1922. XIN S W,HONG Q,LU Y F,et al.Research on microstructure stability of Ti600 high-temperature titanium alloy at 600℃[J].Rare Metal Materials and Engineering,2010,39(11):1918-1922.
[20] 贾蔚菊,曾卫东,张尧武,等.热处理对Ti60合金组织及性能的影响[J].中国有色金属学报,2010,20(11):2136-2141. JIA W J,ZENG W D,ZHANG Y W,et al.Effects of heat treatment on microstructure and properties of Ti60 alloy[J].The Chinese Journal of Nonferrous Metals,2010,20(11):2136-2141.
[1] 徐鹏, 王冠韬, 刘奎, 罗斯达. 石墨烯/碳纳米管嵌入式纤维传感器对树脂基复合材料原位监测的结构-性能关系对比[J]. 材料工程, 2019, 47(9): 29-37.
[2] 宇文超, 刘秉国, 张立波, 郭胜惠, 彭金辉. 低温一步制备氧化石墨烯及微波还原研究[J]. 材料工程, 2019, 47(9): 21-28.
[3] 宋广胜, 纪开盛, 张士宏. AZ31镁合金棒材循环扭转变形及其对力学性能的影响[J]. 材料工程, 2019, 47(9): 46-54.
[4] 温冬辉, 吕阳, 李震, 王清, 唐睿, 董闯. Nb/Ti/Zr/W对310S奥氏体不锈钢析出相行为和力学性能的影响[J]. 材料工程, 2019, 47(9): 61-71.
[5] 赵魏, 王雅娜, 王翔. 分层界面角度对CFRP层板Ⅱ型分层的影响[J]. 材料工程, 2019, 47(9): 152-159.
[6] 高晔, 焦健. NITE工艺制备SiCf/SiC复合材料的研究进展[J]. 材料工程, 2019, 47(8): 33-39.
[7] 亢敏霞, 周帅, 熊凌亨, 宁峰, 王海坤, 杨统林, 邱祖民. 金属有机骨架在超级电容器方面的研究进展[J]. 材料工程, 2019, 47(8): 1-12.
[8] 顾善群, 刘燕峰, 李军, 陈祥宝, 张代军, 邹齐, 肖锋. 碳纤维/环氧树脂复合材料高速冲击性能[J]. 材料工程, 2019, 47(8): 110-117.
[9] 张世杰, 王汝敏, 刘宁, 廖英强, 程勇. 纺丝工艺对T800碳纤维及其复合材料性能的影响[J]. 材料工程, 2019, 47(8): 118-124.
[10] 欧秋仁, 嵇培军, 肖军, 武玲, 王璐. 国产T800碳纤维用氰酸酯树脂开发及其复合材料性能[J]. 材料工程, 2019, 47(8): 125-131.
[11] 刘冠旗, 王春旭, 刘少尊, 厉勇, 谭成文, 刘志超. 新型高密度合金的组织与性能[J]. 材料工程, 2019, 47(8): 154-160.
[12] 杨旭东, 安涛, 邹田春, 巩天琛. 湿热环境对碳纤维增强树脂基复合材料力学性能的影响及其损伤机理[J]. 材料工程, 2019, 47(7): 84-91.
[13] 王聃, 陶德华, 黄秀玲, 华子恺. 聚甲基丙稀酸羟乙酯甘油凝胶仿软骨材料的制备与性能[J]. 材料工程, 2019, 47(7): 71-75.
[14] 王桂芳, 刘忠侠, 张国鹏. 球磨时间对热压烧结制备TiC-CoCrFeNi复合材料微观组织及力学性能的影响[J]. 材料工程, 2019, 47(6): 94-100.
[15] 刘文祎, 徐聪, 刘茂文, 肖文龙, 马朝利. 稀土元素Gd对Al-Si-Mg铸造合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(6): 129-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn