Please wait a minute...
 
材料工程  2019, Vol. 47 Issue (9): 38-45    DOI: 10.11868/j.issn.1001-4381.2019.000284
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响
陈航1,2,3, 弭光宝1,3, 李培杰2, 王旭东1,3, 黄旭1, 曹春晓1
1. 中国航发北京航空材料研究院 先进钛合金航空科技重点实验室, 北京 100095;
2. 清华大学 新材料国际研发中心, 北京 100084;
3. 北京市石墨烯及应用工程技术研究中心, 北京 100095
Effects of graphene oxide on microstructure and mechanical properties of 600℃ high temperature titanium alloy
CHEN Hang1,2,3, MI Guang-bao1,3, LI Pei-jie2, WANG Xu-dong1,3, HUANG Xu1, CAO Chun-xiao1
1. Aviation Key Laboratory of Science and Technology on Advanced Titanium Alloys, AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China;
2. National Center of Novel Materials for International Research, Tsinghua University, Beijing 100084, China;
3. Beijing Engineering Research Center of Graphene and Application, Beijing 100095, China
全文: PDF(11309 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用控温搅拌混合和热等静压等方法,制备添加氧化石墨烯的600℃高温钛合金复合材料。通过金相观察、能谱和物相分析以及拉伸性能实验,研究复合材料的微观组织和力学性能。结果表明:氧化石墨烯添加量为0.3%(质量分数,下同)时,在600℃高温钛合金粉末中分布比较均匀,二者之间的作用方式主要为物理吸附;与未添加氧化石墨烯的合金相比,添加0.3%氧化石墨烯的复合材料的显微组织得到明显细化,α相的平均尺寸下降约36%,室温抗拉强度和屈服强度分别提高7.8%和10.4%,硬度提高25.6%。氧化石墨烯对600℃高温钛合金的强化机理主要为细晶强化、位错强化以及促进(TiZr)6Si3颗粒析出引起的第二相强化。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈航
弭光宝
李培杰
王旭东
黄旭
曹春晓
关键词 氧化石墨烯600℃高温钛合金复合材料微观组织力学性能    
Abstract:The 600℃ high temperature titanium alloy composite with graphene oxide addition was prepared by temperature-controlled mixing method and hot isostatic pressing. Microstructure and mechanical properties of composite were studied by metallographic observation, energy spectrum analysis, phase analysis and tensile test. The results show that graphene oxides are dispersed uniformly in the 600℃ high temperature titanium alloy powder when the content of graphene oxide is 0.3%(mass fraction) and the main mode of action is physical adsorption. Compared with the alloy without graphene oxide, the microstructure of the composite with 0.3% graphene oxide is obviously refined, and the average size of equiaxed alpha phase is reduced by 36%. Meanwhile, the average room temperature tensile strength and yield strength increase by 7.8% and 10.4% respectively and Vickers hardness increases by 25.6%. The strengthening mechanisms of graphene oxide on 600℃ high temperature titanium alloy mainly include grain refinement strengthening,dislocation streng-thening and precipitation strengthening of the (TiZr)6Si3 second-phase.
Key wordsgraphene oxide    600℃ high temperature titanium alloy    composite    microstructure    mech-anical property
收稿日期: 2019-03-27      出版日期: 2019-09-18
中图分类号:  TG146.2  
通讯作者: 弭光宝(1981-),男,高级工程师,博士,主要从事航空发动机高温钛合金及其纳米复合材料、阻燃性能等方面研究,联系地址:北京市81信箱15分箱(100095),E-mail:miguangbao@163.com     E-mail: miguangbao@163.com
引用本文:   
陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
CHEN Hang, MI Guang-bao, LI Pei-jie, WANG Xu-dong, HUANG Xu, CAO Chun-xiao. Effects of graphene oxide on microstructure and mechanical properties of 600℃ high temperature titanium alloy. Journal of Materials Engineering, 2019, 47(9): 38-45.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000284      或      http://jme.biam.ac.cn/CN/Y2019/V47/I9/38
[1] GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6(3):183-191.
[2] BALANDIN A A,GHOSH S,BAO W Z,et al.Superior thermal conductivity of single-layer graphene[J].Nano Letters,2008,8(3):902-907.
[3] ZHU Y W,MURALI S,CAI W W,et al.Graphene and graphene oxide:synthesis, properties, and applications[J].Advanced Mat-erials,2010,22(35):3906-3924.
[4] 洪起虎,燕绍九,杨程,等.氧化石墨烯/铜基复合材料的微观结构及力学性能[J].材料工程,2016,44(9):1-7. HONG Q H,YAN S J,YANG C,et al.Microstructure and mechanical properties of graphene oxide/copper composites[J].Journal of Materials Engineering,2016,44(9):1-7.
[5] ZHANG H P,XU C,XIAO W L,et al.Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion[J].Materials Science and Engineering:A,2016,658:8-15.
[6] RASHAD M,PAN F S,TANG A T,et al.Development of magnesium-graphene nanoplatelets composite[J].Journal of Composite Materials,2015,49(3):285-293.
[7] RASHAD M,PAN F S,ASIF M,et al.Improved mechanical properties of magnesium-graphene composites with copper-graph-ene hybrids[J].Materials Science and Technology,2015,31(12):1452-1461.
[8] 吉传波,王晓峰,邹金文,等.石墨烯增强镍基粉末高温合金复合材料的力学性能[J].材料工程,2017,45(3):1-6. JI C B,WANG X F,ZOU J W,et al.Mechanical properties of graphene reinforced nickel-based P/M superalloy[J].Journal of Materials Engineering,2017,45(3):1-6.
[9] ZHANG X J,SONG F,WEI Z P,et al.Microstructural and mechanical characterization of in-situ TiC/Ti titanium matrix composites fabricated by graphene/Ti sintering reaction[J].Materials Science and Engineering:A,2017,705:153-159.
[10] NIU B,ZHAO K,ZHANG F,et al.Microstructure and properties of graphene/titanium composite materials prepared by plasma activated sintering[J].Science of Advanced Materials,2017,9:1126-1130.
[11] SONG Y,CHEN Y,LIU W W,et al.Microscopic mechanical properties of titanium composites containing multi-layer grap-hene nanofillers[J].Materials & Design,2016,109:256-263.
[12] MU X N,ZHANG H M,CAI H N,et al.Microstructure evolution and superior tensile properties of low content graphene nanoplatelets reinforced pure Ti matrix composites[J].Materials Science and Engineering:A,2017,687:164-174.
[13] 蔡建明,弭光宝,高帆,等.航空发动机用先进高温钛合金材料技术研究与发展[J].材料工程,2016,44(8):1-10. CAI J M,MI G B,GAO F,et al.Research and development of some advanced high temperature titanium alloys for aero-engine[J].Journal of Materials Engineering,2016,44(8):1-10.
[14] 邝泉波,邹黎明,蔡一湘,等.等离子旋转电极雾化法制备高品质Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn合金粉末[J].材料工程,2017,45(10):39-46. KUANG Q B,ZOU L M,CAI Y X,et al.Preparation of high quality Ti-6.5Al-1.4Si-2Zr-0.5Mo-2Sn alloy powder by plasma rotating electrode process[J].Journal of Materials Engineering,2017,45(10):39-46.
[15] PARK S,AN J,POTTS J R,et al.Hydrazine-reduction of graphite-and graphene oxide[J].Carbon,2011,49(9):3019-3023.
[16] LEI Z B,LU L,ZHAO X S.The electrocapacitive properties of graphene oxide reduced by urea[J]. Energy and Environmental Science,2012,5(4):6391-6399.
[17] ACIK M,LEE G,MATTEVI C,et al.Unusual infrared-absorption mechanism in thermally reduced graphene oxide[J].Nature Materials,2010,9(10):840-845.
[18] KNACKE O,KUBASCHEWSKI O,HESSELMAM K.Therm-ochemical properties of inorganic substances[M].New York,US:Springer-Verlag,1991.
[19] 辛社伟,洪权,卢亚锋,等.Ti600高温钛合金600℃下组织稳定性研究[J].稀有金属材料与工程,2010,39(11):1918-1922. XIN S W,HONG Q,LU Y F,et al.Research on microstructure stability of Ti600 high-temperature titanium alloy at 600℃[J].Rare Metal Materials and Engineering,2010,39(11):1918-1922.
[20] 贾蔚菊,曾卫东,张尧武,等.热处理对Ti60合金组织及性能的影响[J].中国有色金属学报,2010,20(11):2136-2141. JIA W J,ZENG W D,ZHANG Y W,et al.Effects of heat treatment on microstructure and properties of Ti60 alloy[J].The Chinese Journal of Nonferrous Metals,2010,20(11):2136-2141.
[1] 陈利, 焦伟, 王心淼, 刘俊岭. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
[2] 魏化震, 钟蔚华, 于广. 高分子复合材料在装甲防护领域的研究与应用进展[J]. 材料工程, 2020, 48(8): 25-32.
[3] 肇研, 刘寒松. 连续纤维增强高性能热塑性树脂基复合材料的制备与应用[J]. 材料工程, 2020, 48(8): 49-61.
[4] 曾成均, 刘立武, 边文凤, 冷劲松, 刘彦菊. 激励响应复合材料的4D打印及其应用研究进展[J]. 材料工程, 2020, 48(8): 1-13.
[5] 包建文, 钟翔屿, 张代军, 彭公秋, 李伟东, 石峰晖, 李晔, 姚锋, 常海峰. 国产高强中模碳纤维及其增强高韧性树脂基复合材料研究进展[J]. 材料工程, 2020, 48(8): 33-48.
[6] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[7] 郭建强, 李炯利, 梁佳丰, 李岳, 朱巧思, 王旭东. 氧化石墨烯的化学还原方法与机理研究进展[J]. 材料工程, 2020, 48(7): 24-35.
[8] 张波波, 张文娟, 杜雪岩, 王有良. 铁基磁性纳米材料吸附废水中重金属离子研究进展[J]. 材料工程, 2020, 48(7): 93-102.
[9] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[10] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[11] 王彦菊, 姜嘉赢, 沙爱学, 李兴无. 新型高温合金材料建模及涡轮盘成形工艺模拟[J]. 材料工程, 2020, 48(7): 127-132.
[12] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[13] 高禹, 刘京, 王进, 王柏臣, 崔旭, 包建文. 真空热循环对碳/双马来酰亚胺复合材料低速冲击性能的影响[J]. 材料工程, 2020, 48(7): 154-161.
[14] 赵强, 祝文卉, 邵天巍, 帅焱林, 刘佳涛, 王冉, 张利, 梁晓波. Ti-22Al-25Nb合金惯性摩擦焊接头显微组织与力学性能[J]. 材料工程, 2020, 48(6): 140-147.
[15] 冯景鹏, 余欢, 徐志锋, 蔡长春, 王振军, 胡银生, 王雅娜. 2.5D浅交直联Cf/Al复合材料的显微组织及弯曲和剪切性能[J]. 材料工程, 2020, 48(6): 132-139.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn