Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (6): 148-155    DOI: 10.11868/j.issn.1001-4381.2019.000416
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响
石磊1, 雷力明1, 王威1, 付鑫1, 张广平2
1. 中国航发上海商用航空发动机制造有限责任公司, 上海 201306;
2. 中国科学院金属研究所 沈阳材料科学国家研究中心, 沈阳 110016
Effects of hot isostatic pressing and heat treatment process on microstructure and tensile properties of selective laser melting manufactured GH4169 alloy
SHI Lei1, LEI Li-ming1, WANG Wei1, FU Xin1, ZHANG Guang-ping2
1. AECC Shanghai Commercial Aircraft Engine Manufacturing Co., Ltd., Shanghai 201306, China;
2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
全文: PDF(6070 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用激光选区熔化(SLM)成形技术制备GH4169合金,利用金相显微镜(OM)、扫描电子显微镜(SEM)、电子背散射衍射(EBSD)和透射电镜(TEM)等分析热等静压/热处理工艺对SLM成形GH4169合金微观组织及拉伸性能的影响规律。结果表明:沉积态合金组织中,沿沉积方向的晶粒为柱状晶,晶粒内枝晶组织细小,枝晶间分布大量Laves相;经热等静压后,合金中的气孔及Laves相可被有效消除,沿沉积方向的晶粒转变为等轴晶;经980℃/1 h固溶处理后,合金中的晶界处析出大量短棒状δ相。热等静压/热处理后GH4169合金试样的室温及650℃拉伸性能均高于锻件标准要求的力学性能指标,且温度对断裂方式影响不大。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
石磊
雷力明
王威
付鑫
张广平
关键词 激光选区熔化成形GH4169热等静压组织演变拉伸性能    
Abstract:GH4169 alloys were manufactured by selective laser melting (SLM). The microstructure evolution and tensile properties of GH4169 alloys during hot isostatic pressing(HIP) and heat treatment(HT) process were analyzed by OM,SEM,EBSD and TEM. The results show that the grains of the as-deposited samples in the building direction are columnar, exhibit very fine cellular-dendritic structure with fine Laves phases precipitating in the interdendritic region. Most of porosities and Laves phases disappear after HIP, and the microstructure parallel to the building direction is transformed into equiaxed grains. Short rod-like δ phases are precipitated along grain boundaries after annealing at 980 ℃ for 1 h. The tensile properties at room temperature and 650 ℃ of specimens after HIP and HT are higher than those of the standard requirements for the forgings, and the temperature has a little influence on the fracture mode.
Key wordsselective laser melting    GH4169    hot isostatic pressing    microstructure evolution    tensile property
收稿日期: 2019-05-07      出版日期: 2020-06-15
中图分类号:  TG146.1+5  
通讯作者: 雷力明(1976-),男,研究员,博士,主要从事航空发动机材料及关键零部件制造技术研发工作,联系地址:上海市闵行区莲花南路3998号中国航发商发设计研发中心(200241), biamfirst@126.com     E-mail: biamfirst@126.com
引用本文:   
石磊, 雷力明, 王威, 付鑫, 张广平. 热等静压/热处理工艺对激光选区熔化成形GH4169合金微观组织与拉伸性能的影响[J]. 材料工程, 2020, 48(6): 148-155.
SHI Lei, LEI Li-ming, WANG Wei, FU Xin, ZHANG Guang-ping. Effects of hot isostatic pressing and heat treatment process on microstructure and tensile properties of selective laser melting manufactured GH4169 alloy. Journal of Materials Engineering, 2020, 48(6): 148-155.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000416      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/148
[1] 齐欢. INCONEL 718(GH4169)高温合金的发展与工艺[J]. 材料工程,2012(8):92-100. QI H. Review of INCONEL 718 alloy: its history, properties, processing and developing substitutes[J]. Journal of Materials Engineering, 2012(8): 92-100.
[2] 娄学明,孙文儒,郭守仁,等. IN718高温合金热腐蚀行为及其对力学性能的影响[J].稀有金属材料与工程, 2008, 37(2):259-263. LOU X M, SUN W R, GUO S R,et al. Hot corrosion behavior of IN718 alloy and its effect on mechanical properties[J]. Rare Metal Materials and Engineering, 2008, 37(2):259-263.
[3] LI X, SHI J J, WANG C H, et al. Effect of heat treatment on microstructure evolution of Inconel 718 alloy fabricated by selective laser melting[J]. Journal of Alloys and Compounds, 2018, 764:639-649.
[4] DENG D Y,PENG R L, BRODIN H, et al.Microstructure and mechanical properties of Inconel 718 processed by selective laser melting: sample orientation dependence and effects of post heat treatments[J]. Materials Science and Engineering:A, 2018, 713:294-306.
[5] 邓晓阳.热处理对3D打印Inconel 718合金组织和力学性能的影响研究[D].南昌:南昌航空大学,2017. DENG X Y.Effect of heat treatment on microstructures and mechanical property of Inconel 718 alloy by 3D print [D]. Nanchang: Nanchang Hangkong University,2017.
[6] SUI S, CHEN J, MING X L, et al.The failure mechanism of 50% laser additive manufactured Inconel 718 and the deformation behavior of Laves phases during a tensile process[J].The International Journal of Advanced Manufacturing Technology, 2017, 91(5/8):2733-2740.
[7] 明宪良,陈静,谭华,等. 激光修复GH4169高温合金的持久断裂机制研究[J].中国激光, 2015, 42(4):1-7. MING X L, CHEN J, TAN H, et al. Research on persistent fracture mechanism of laser forming repaired GH4169 superalloy[J]. Chinese Journal of Lasers, 2015, 42(4):1-7.
[8] ATKINSON H V, DAVIES S. Fundamental aspects of hot isostatic pressing: an overview[J].Metallurgical and Materials Transactions A, 2000, 31(12):2981-3000.
[9] KIM M T, CHANG S Y, WON J B. Effect of HIP process on the micro-structural evolution of a nickel-based superalloy[J]. Materials Science and Engineering:A, 2006, 441(1/2):126-134.
[10] TILLMANN W, SCHAAK C, NELLESEN J, et al.Hot isostatic pressing of IN718 components manufactured by selective laser melting[J]. Additive Manufacturing, 2017, 13:93-102.
[11] HEBERT R J. Viewpoint: metallurgical aspects of powder bed metal additive manufacturing[J].Journal of Materials Science, 2016, 51(3):1165-1175.
[12] TAN J H, LEONG W, WONG E, et al.An overview of powder granulometry on feedstock and part performance in the selective laser melting process[J].Additive Manufacturing, 2017, 18:228-255.
[13] KURZ W, FISHER D J. Fundamentals of solidification [M].4th ed.Uetikon-Zuerich,Switzerland:Trans Tech Publications Ltd, 1998.
[14] BASAK A, ACHARYA R, DAS S. Additive manufacturing of single-crystal superalloy CMSX-4 through scanning laser epita-xy: computational modeling, experimental process development, and process parameter optimization[J]. Metallurgical and Materials Transactions A, 2016, 47(8):3845-3859.
[15] FU S H, DONG J X, ZHANG M C, et al.Alloy design and development of INCONEL718 type alloy[J]. Materials Science and Engineering:A, 2009, 499(1/2):215-220.
[16] 凌斌,钟炳文,杨玉荣,等. GH169合金的相变研究[J]. 航空材料学报, 1994, 14(4):1-7. LING B, ZHONG B W, YANG Y R, et al.On the phase transformation in superalloy GH169[J]. Journal of Aeronautical Materials, 1994, 14(4):1-7.
[17] AZADIAN S, WEI L Y, WARREN R. Delta phase precipitation in Inconel 718[J]. Materials Characterization, 2004, 53(1):7-16.
[18] 张善勇,隋玉俭. 铸造高温合金的热等静压致密化机理[J]. 钢铁研究学报, 1985, 5(增刊1):77-83. ZHANG S Y, SUI Y J. HIP densification mechanisms for cast superalloys[J]. Journal of Iron and Steel, 1985, 5(Suppl 1):77-83.
[19] 刘东,罗子健. GH4169合金热加工过程中的显微组织演化数学模型[J].中国有色金属学报, 2003, 13(5):1211-1218. LIU D, LUO Z J. Mathematical model for microstructure evolution of GH4169 alloy during hot working process [J]. The Chinese Journal of Nonferrous Metals, 2003, 13(5):1211-1218.
[1] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[2] 齐业雄, 姜亚明, 李嘉禄. 混杂比对碳/芳纶纤维混杂纬编双轴向多层衬纱织物增强复合材料力学性能的影响[J]. 材料工程, 2020, 48(2): 71-78.
[3] 甘洪岩, 程明, 宋鸿武, 陈岩, 张士宏, Vladimir Petrenko. GH4169合金楔横轧加工过程中动态再结晶及织构演变[J]. 材料工程, 2020, 48(2): 114-122.
[4] 秦健朝, 崔仁杰, 黄朝晖. 小角度晶界对DD5镍基单晶高温合金中、高温条件下力学性能的影响[J]. 材料工程, 2020, 48(10): 114-122.
[5] 韩梅, 喻健, 李嘉荣, 谢洪吉, 董建民, 杨岩. 喷丸对DD6单晶高温合金拉伸性能的影响[J]. 材料工程, 2019, 47(8): 169-175.
[6] 李雅莉, 雷力明, 侯慧鹏, 何艳丽. 热工艺对激光选区熔化Hastelloy X合金组织及拉伸性能的影响[J]. 材料工程, 2019, 47(5): 100-106.
[7] 马龙腾, 王彦峰, 狄国标, 杨永达, 黄乐庆, 李春智. Q460FRW耐火钢的组织稳定性[J]. 材料工程, 2019, 47(10): 82-89.
[8] 梁晓波, 李晓延, 姚鹏, 李扬, 金凤阳. 微电子封装中全Cu3Sn焊点形成过程中的组织演变及生长形貌[J]. 材料工程, 2018, 46(8): 106-112.
[9] 朱怀沈, 聂义宏, 赵帅, 王宝忠. 镍基617合金动态再结晶微观组织演变与预测[J]. 材料工程, 2018, 46(6): 80-87.
[10] 王驰, 冉广, 雷鹏辉, 黄金华. SA508 Gr.3 Cl.1钢的疲劳和高温拉伸性能[J]. 材料工程, 2018, 46(5): 151-158.
[11] 屈敏, 刘鑫, 崔岩, 刘峰斌, 焦志伟, 刘园. 稀土元素对原位合成TiB2/Al复合材料组织和性能的影响[J]. 材料工程, 2018, 46(3): 98-104.
[12] 郭小童, 郑为为, 肖程波, 郑运荣, 冯强. K465高温合金短时超温后的显微组织退化及拉伸性能[J]. 材料工程, 2018, 46(10): 77-86.
[13] 孙大智, 薛克敏, 董力源, 李萍. 扭转圈数对高压扭转SiCP/Al复合材料界面扩散行为和组织性能的影响[J]. 材料工程, 2017, 45(7): 13-18.
[14] 李潭, 顾轶卓, 王绍凯, 李敏, 张佐光. 碳纤维丝束起毛量测试方法[J]. 材料工程, 2017, 45(7): 84-90.
[15] 刘臣, 田素贵, 王欣, 吴静, 梁爽. 一种GH4169镍基合金的组织结构与蠕变性能[J]. 材料工程, 2017, 45(6): 43-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn