Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (6): 170-175    DOI: 10.11868/j.issn.1001-4381.2019.000647
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
热处理对FeCrMnNiCox合金微观组织及力学性能的影响
李和奇1, 王晓民1,2, 曾宏燕1
1. 青海大学 青海省轻合金重点实验室 青海省高性能轻金属合金及深加工工程技术研究中心, 西宁 810016;
2. 营口理工学院 材料科学与工程学院, 辽宁 营口 115014
Effect of heat treatment on microstructure and mechanical properties of FeCrMnNiCox alloy
LI He-qi1, WANG Xiao-min1,2, ZENG Hong-yan1
1. Qinghai High Performance Light Metal Alloy and Deep Processing Engineering Technology Research Center, Key Laboratory of Qinghai Province for Light Alloy, Qinghai University, Xining 810016, China;
2. Department of Materials Science and Engineering, Yingkou Institute of Technology, Yingkou 115014, Liaoning, China
全文: PDF(2067 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 金属粉体经行星式球磨机混合后,采用真空熔铸技术制备FeCrMnNiCo,FeCrMnNiCo0.5,FeCrMnNi 3种多主元合金。采用金相显微镜、扫描电镜(SEM)、硬度计、万能拉伸试验机,研究热处理温度对3种多主元合金微观组织、拉伸性能和硬度的影响。结果表明:900℃热处理后的FeCrMnNi合金硬度最大为380HV;经过700℃热处理后FeCrMnNiCo0.5塑性最大,其断后伸长率为54.7%。同一热处理温度下,随着Co含量增多,组织从树枝状转变成蜂窝状,抗拉强度减小。同一种合金硬度随着热处理温度升高呈现增大的趋势,这可能与热处理后析出相增多有关,但其抗拉强度基本不变。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李和奇
王晓民
曾宏燕
关键词 FeCrMnNiCox热处理温度形貌力学性能    
Abstract:FeCrMnNiCo, FeCrMnNiCo0.5 and FeCrMnNi alloys were prepared by vacuum melting and casting technology after metal powders was mixed by planetary ball mill. The effects of heat treatment temperature on the microstructures, tensile properties and hardness of three kinds of multi-principal alloys were studied by means of metallographic microscope, scanning electron microscopy (SEM), hardness tester and universal tensile testing machine. The results show that the hardness of FeCrMnNi alloy after heat treatment at 900 ℃ is the highest and the maximum hardness is 380HV. The plasticity of FeCrMnNiCo0.5 alloy is the largest after heat treatment at 700 ℃, and its elongation after fracture is 54.7%. At the same heat treatment temperature, with the increase of Co content, the alloys’ structure is changed from dendritic to honeycomb, and the alloys’ tensile strength is decreased. The hardness of the same alloy is increased with the increase of heat treatment temperature, which may be related to the increase of precipitates after heat treatment, but its tensile strength remains unchanged.
Key wordsFeCrMnNiCox    heat treatment temperature    morphology    mechanical property
收稿日期: 2019-07-12      出版日期: 2020-06-15
中图分类号:  TG166.9  
通讯作者: 王晓民(1975-),男,副教授,博士,现从事先进结构陶瓷、金属基复合材料和金属腐蚀与防护的研究,联系地址:辽宁省营口市西市区博文路46号营口理工学院科技处(115014), ty.com.cn@126.com     E-mail: ty.com.cn@126.com
引用本文:   
李和奇, 王晓民, 曾宏燕. 热处理对FeCrMnNiCox合金微观组织及力学性能的影响[J]. 材料工程, 2020, 48(6): 170-175.
LI He-qi, WANG Xiao-min, ZENG Hong-yan. Effect of heat treatment on microstructure and mechanical properties of FeCrMnNiCox alloy. Journal of Materials Engineering, 2020, 48(6): 170-175.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000647      或      http://jme.biam.ac.cn/CN/Y2020/V48/I6/170
[1] YEH J W,LIN S J,CHIN T S,et al.Formation of simple crystal structures in Cu-Co-Ni-Cr-Al-Fe-Ti-V alloys with multiprincipal metallic elements [J].Metallurgical & Materials Transactions:A,2004,35(8):2533-2536.
[2] 高家诚,李锐.高熵合金研究的新进展[J].功能材料,2008,39(7):1059-1061. GAO J C,LI R.New progress in the study of high-entropy alloys[J].Journal of Functional Materials,2008,39(7):1059-1061.
[3] CHOU H P,CHANG Y S,CHEN S K,et al.Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0≤x≤2) high-entropy alloys[J].Materials Science & Engineering:B,2009,163(3):184-189.
[4] GALI A,GEORGE P.Tensile properties of high- and medium-entropy alloys[J].Intermetallics,2013,39(3):74-78.
[5] TANG Z,HUANG L,HE W,et al.Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys[J].Entropy,2014,16(2):895-911.
[6] 陈永星,朱胜,王晓明,等.高熵合金制备及研究进展[J].材料工程,2017,45(11):129-138. CHEN Y X,ZHU S,WANG X M,et al.Progress in preparation and research of high-entropy alloys[J].Journal of Materials Engineering,2017,45(11):129-138.
[7] GLUDOVATA B,HOHENWARTER A,CATOOR D,et al. A fracture-resistant high-entropy alloy for cryogenic applications [J].Science,2014,345(6201):1153-1158.
[8] HUI J,LI J,HAN K,et al.Effects of tungsten on microstructure and mechanical properties of CrFeNiV0.5Wx and CrFeNi2V0.5Wx high-entropy alloys[J].Journal of Materials Engineering & Performance,2015,24(12):4594-4600.
[9] 唐群华,蔡建宾,吴桂芬,等.热处理对Al0.5CoCrFeNiB0.2高熵合金组织结构及力学性能的影响[J].铸造,2011,60(12):24-27. TANG Q H,CAI J B,WU G F,et al.Effect of heat treatment on microstructure and mechanical properties of Al0.5CoCrFeNiB0.2 high-entropy alloy[J].Casting,2011,60(12):24-27.
[10] YEH J W,CHEN S K,LIN S J,et al.Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes[J].Advanced Engineering Materials,2004,6(5):299-303.
[11] MA S G,JIAO Z M,QIAO J W,et al.Strain rate effects on the dynamic mechanical properties of the AlCrCuFeNi2high-entropy alloy[J].Materials Science & Engineering:A,2016,649:35-38.
[12] HSU C Y,SHEU T S.Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys [J].Wear,2010,268(5):653-659.
[13] 李青宇,李涤尘,张航,等. 激光熔覆沉积成形NbMoTaTi难熔高熵合金的组织与强度研究[J].航空制造技术,2018,61(10):60-66. LI Q Y,LI D C,ZHANG H,et al.Microstructure and strength of NbMoTaTi refractory high entropy alloy formed by laser cladding deposition[J].Aviation Manufacturing Technology,2018,61(10):60-66.
[14] 刘用,马胜国,刘英杰,等.AlxCrCuFeNi2多主元高熵合金的摩擦磨损性能[J].材料工程,2018,46(2):99-104. LIU Y,MA S G,LIU Y J,et al.Friction and wear properties of AlxCrCuFeNi2 multiprincipal high-entropy alloys[J].Journal of Materials Engineering,2018,46(2):99-104.
[15] 陈刚,王璐,杨静,等.Al0.1CoCrFeNi高熵合金的力学性能和变形机理[J].材料工程,2019,47(1):106-111. CHEN G,WANG L,YANG J,et al. Mechanical properties and deformation mechanisms of Al0.1CoCrFeNi high-entropy alloys[J].Journal of Materials Engineering,2019,47(1):106-111.
[16] 王重,林万明,马胜国,等.冷轧对Al10Cu25Co20Fe20Ni25高熵合金组织结构及力学性能的影响[J].材料工程,2015,43(8):50-55. WANG C,LIN W M,MA S G,et al.Effect of cold rolling on microstructure and mechanical properties of Al10Cu25Co20Fe20Ni25 high-entropy alloy [J].Journal of Materials Engineering,2015,43(8):50-55.
[17] LU Y,DONG Y,GUO S,et al.A promising new class of high-temperature alloys:eutectic high-entropy alloys[J].Scientific Reports,2014,4:6200.
[18] LU Y,GAO X,JIANG L,et al.Directly cast bulk eutectic and near-eutectic high entropy alloys with balanced strength and ductility in a wide temperature range[J].Acta Materialia,2017,124:143-150.
[19] MUNITZ A,SALHOV S,HAYUN S,et al.Heat treatment impacts the micro-structure and mechanical properties of AlCoCrFeNi high entropy alloy[J].Journal of Alloys & Compounds,2016,683:221-230.
[20] GAO J,DONG Z,REN H,et al.Microstructure evolution in an advanced 9Cr-1.5Mo-1Co-VNbBN alloy during heat treatment and high temperature aging[J].Steel Research International,2019,90(5):1800534.
[21] MUNITZ A,MESHI L,KAUFMAN M J.Heat treatments effects on the microstructure and mechanical properties of an equiatomic Al-Cr-Fe-Mn-Ni high entropy alloy[J].Materials Science and Engineering:A,2017, 689:384-394.
[22] 张博文,唐清秋,钟志宏.热处理对FeCrVTiMo高熵合金微观组织及力学性能的影响[J].热加工工艺,2018(14):223-226. ZHANG B W,TANG Q Q,ZHONG Z H.Effect of heat treatment on microstructure and mechanical properties of FeCrVTiMo high entropy alloy[J].Hot Working Process,2018(14):223-226.
[23] 孙永哲,田笑,魏亚风,等. 热处理对冷轧变形Al0.3CoCrFeNi高熵合金组织与力学性能的影响[J].材料热处理学报,2017,38(9):18-23. SUN Y Z,TIAN X,WEI Y F,et al.Effect of heat treatment on microstructure and mechanical properties of cold rolled Al0.3CoCrFeNi high entropy alloy[J].Journal of Material Heat Treatment,2017,38(9):18-23.
[24] 胡赓祥.材料科学基础[M].上海:上海交通大学出版社,2003. HU G X.Fundamentals of materials science[M].Shanghai:Shanghai Jiao Tong University Press,2003.
[25] QIAN M.In-situ observations of the dissolution of carbides in an Fe-Cr-C alloy[J].Scripta Materialia,1999,41(12):1301-1303.
[1] 许凤光, 刘垚, 马文江, 张憬. 退火工艺对Zn/AZ31/Zn复合板材界面微观结构及力学性能的影响[J]. 材料工程, 2020, 48(8): 142-148.
[2] 张梦清, 于鹤龙, 王红美, 尹艳丽, 魏敏, 乔玉林, 张伟, 徐滨士. 感应熔覆原位合成TiB增强钛基复合涂层的微结构与力学性能[J]. 材料工程, 2020, 48(7): 111-118.
[3] 郝思嘉, 李哲灵, 任志东, 田俊鹏, 时双强, 邢悦, 杨程. 拉曼光谱在石墨烯聚合物纳米复合材料中的应用[J]. 材料工程, 2020, 48(7): 45-60.
[4] 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟. 柔性阻变存储器材料研究进展[J]. 材料工程, 2020, 48(7): 81-92.
[5] 吴怡芳, 崇少坤, 柳永宁, 郭生武, 白利锋, 张翠萍, 李成山. 胶体纳米晶合成与形貌控制策略及机理[J]. 材料工程, 2020, 48(5): 23-30.
[6] 赵新龙, 金鑫, 丁成成, 俞娟, 王晓东, 黄培. 热处理时间对聚甲基丙烯酰亚胺(PMI)泡沫结构和性能的影响[J]. 材料工程, 2020, 48(3): 53-58.
[7] 姚小飞, 田伟, 李楠, 王萍, 吕煜坤. 铜导线表面热浸镀PbSn合金镀层的组织与性能[J]. 材料工程, 2020, 48(3): 148-154.
[8] 叶寒, 黄俊强, 张坚强, 李聪聪, 刘勇. 纳米WC增强选区激光熔化AlSi10Mg显微组织与力学性能[J]. 材料工程, 2020, 48(3): 75-83.
[9] 李淑文, 赵孔银, 陈康, 李金刚, 赵磊, 王晓磊, 魏俊富. TiO2共混丝朊接枝聚丙烯腈过滤膜制备及性能研究[J]. 材料工程, 2020, 48(3): 47-52.
[10] 刘也川, 张松, 谭俊哲, 关锰, 陶邵佳, 张春华. 机械滚压对A473M钢疲劳性能的影响[J]. 材料工程, 2020, 48(3): 163-169.
[11] 李昊卿, 田玉晶, 赵而团, 郭红, 方晓英. S32750双相不锈钢相界与晶界特征对其力学性能和耐蚀性能的影响[J]. 材料工程, 2020, 48(2): 133-139.
[12] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[13] 梁效铭, 钟溢健, 马丽丽, 李聪, 陈南春, 解庆林. 硅藻基As(Ⅴ)表面印迹材料的制备与表征[J]. 材料工程, 2020, 48(1): 156-161.
[14] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[15] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn