Please wait a minute...
 
材料工程  2020, Vol. 48 Issue (10): 141-147    DOI: 10.11868/j.issn.1001-4381.2019.000701
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
TC11钛合金表面保护性摩擦氧化层的形成及作用
李新星1,2,3, 王红侠1,2, 施剑峰3, 韩伯群3
1. 宿迁学院 材料科学与工程系, 江苏 宿迁 223800;
2. 宿迁学院 产业技术研究院, 江苏 宿迁 223800;
3. 江苏丰东热技术有限公司, 江苏 盐城 224100
Formation and function of protective tribo-oxide layers on TC11 titanium alloy surface
LI Xin-xing1,2,3, WANG Hong-xia1,2, SHI Jian-feng3, HAN Bo-qun3
1. Department of Materials Science and Engineering, Suqian College, Suqian 223800, Jiangsu, China;
2. Institute of Industrial Technology Research, Suqian College, Suqian 223800, Jiangsu, China;
3. Jiangsu Fengdong Thermal Technology Limited Company, Yancheng 224100, Jiangsu, China
全文: PDF(5046 KB)   HTML()
输出: BibTeX | EndNote (RIS)      
摘要 采用MPX-2000型销盘式磨损试验机,在2.68 m/s和4 m/s滑动速率下对TC11钛合金进行干滑动磨损实验以及特殊设计的双滑动磨损实验。通过X射线衍射仪、扫描电镜和能谱仪对磨损表面及摩擦层的物相、成分和形貌进行详细分析。采用数字显微硬度仪测试摩擦层至钛合金基体的显微硬度分布。结果表明:不同滑动速率下TC11钛合金磨损表面均能形成一层摩擦层。摩擦层的物相、状态和性能随滑动条件改变而发生变化。摩擦层可以分为无氧化物摩擦层和摩擦氧化层。通过4 m/s和2.68 m/s双滑动磨损实验直接验证了TC11钛合金干滑动磨损过程中形成的摩擦氧化层具有良好的减磨效果。TC11钛合金在2.68 m/s速率下的磨损机理为剥层磨损;在4 m/s以及4 m/s和2.68 m/s双滑动时的磨损机理均为氧化磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李新星
王红侠
施剑峰
韩伯群
关键词 钛合金干滑动摩擦层双滑动磨损机理    
Abstract:Dry sliding wear tests and specially designed double sliding wear tests of TC11 titanium alloys were carried out at sliding velocities of 2.68 m/s and 4 m/s by using a MPX-2000 type pin-on-disc wear tester. The phase, composition and morphology of worn surfaces and tribo-layers were analyzed in detail by X-ray diffractometer, scanning electron microscope and energy dispersive spectrometer. The microhardness distribution from tribo-layers to the matrix was measured by using a digital microhardness tester. The results show that tribo-layers are always found to be formed on the worn surface of TC11 titanium alloy at different sliding rates. The phase, state and property of the tribo-layer vary with the sliding conditions. Tribo-layers can be divided into tribo-oxide layer and no-oxide tribo-layer. Through 4 m/s & 2.68 m/s double sliding wear test, the tribo-oxide layer formed in the dry sliding wear process of TC11 titanium alloy is proved to possess good wear-reducing effect. The wear mechanism of TC11 titanium alloy is delamination wear at 2.68 m/s, and oxidative wear at 4 m/s and 4 m/s & 2.68 m/s.
Key wordstitanium alloy    dry sliding    tribo-layer    double sliding    wear mechanism
收稿日期: 2019-07-30      出版日期: 2020-10-17
中图分类号:  TG115.5+8  
通讯作者: 李新星(1983-),女,副教授,博士,从事专业:金属基复合材料及材料摩擦磨损,联系地址:江苏省宿迁市宿城区黄河南路399号宿迁学院材料科学与工程系(223800),E-mail:newstar1015@126.com     E-mail: newstar1015@126.com
引用本文:   
李新星, 王红侠, 施剑峰, 韩伯群. TC11钛合金表面保护性摩擦氧化层的形成及作用[J]. 材料工程, 2020, 48(10): 141-147.
LI Xin-xing, WANG Hong-xia, SHI Jian-feng, HAN Bo-qun. Formation and function of protective tribo-oxide layers on TC11 titanium alloy surface. Journal of Materials Engineering, 2020, 48(10): 141-147.
链接本文:  
http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2019.000701      或      http://jme.biam.ac.cn/CN/Y2020/V48/I10/141
[1] 刘莹莹,陈子勇,金头男,等. 600℃高温钛合金发展现状与展望[J]. 材料导报, 2018, 32(11):1863-1869. LIU Y Y, CHEN Z Y, JIN T N, et al. Present situation and prospect of 600℃ high temperature titanium alloys[J]. Materials Review, 2018, 32(11):1863-1869.
[2] 朱知寿. 我国航空用钛合金技术研究现状及发展[J]. 航空材料学报, 2014, 34(4):44-50. ZHU Z S.Recent research and development of titanium alloys for aviation application in China[J]. Journal of Aeronautical Materials, 2014, 34(4):44-50.
[3] BUDINSKI K G. Tribological properties of titanium alloys[J]. Wear, 1991, 151(2):203-217.
[4] MALIUTINA I N, SIMOHAND H, SIJOBERT J, et al. Structure and oxidation behavior of γ-TiAl coating produced by laser cladding on titanium alloy[J]. Surface and Coatings Technology, 2017, 319:136-144.
[5] 杨闯,彭晓东,刘静,等. TC4钛合金低压真空氮化改性层的制备与性能[J]. 材料工程, 2015, 43(3):78-82. YANG C, PENG X D, LIU J, et al. Preparation and property of low pressure vacuum nitriding modified layer on TC4 titanium alloy[J]. Journal of Materials Engineering, 2015, 43(3):78-82.
[6] NIU X, YU Y, MA L, et al. Experimental study on the dynamic mechanical properties of titanium alloy after thermal oxidation[J]. Applied Physics A, 2016, 122(6):597.
[7] BALLA V K, SODERLIND J, BOSE S, et al. Microstructure, mechanical and wear properties of laser surface melted Ti6Al4V alloy[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32(4):335-344.
[8] 常海,郭雪刚,文磊,等. SiC纳米颗粒对TC4钛合金微弧氧化涂层组织结构及耐蚀性能的影响[J].材料工程,2019,47(3):109-115. CHANG H, GUO X G, WEN L, et al. Influence of SiC nanoparticles on microstructure and corrosion behavior of microarc oxidation coatings formed on TC4 alloy[J]. Journal of Materials Engineering, 2019, 47(3):109-115.
[9] MOLINARI A, STRAFFELINI G, TESI B, et al. Dry sliding wear mechanisms of the Ti6Al4V alloy[J]. Wear, 1997, 208(1/2):105-112.
[10] STRAFFELINI G, MOLINARI A. Dry sliding wear of Ti-6Al-4V alloy as influenced by the counterface and sliding conditions[J]. Wear, 1999, 236(1/2):328-338.
[11] QIU M, ZHANG Y Z, ZHANG J H, et al. Microstructure and tribological characteristics of Ti-6Al-4V alloy against GCr15 under high speed and dry sliding[J]. Materials Science and Engineering:A, 2006, 434(1/2):71-75.
[12] ALAM M O, HASEEB A S M A. Response of Ti-6Al-4V and Ti-24Al-11Nb alloys to dry sliding wear against hardened steel[J]. Tribology International, 2002, 35(6):357-362.
[13] CHELLIAH N, KAILAS S V. Synergy between tribo-oxidation and strain rate response on governing the dry sliding wear behavior of titanium[J]. Wear, 2009, 266(7/8):704-712.
[14] 张秋阳,王兰,李新星,等. TC11合金的高温磨损行为和耐磨性[J]. 稀有金属, 2015, 39(10):877-881. ZHANG Q Y, WANG L, LI X X, et al. Elevated-temperature wear behavior and wear resistance of TC11 alloy[J]. Chinese Journal of Rare Metals, 2015, 39(10):877-881.
[15] 王兰,丁红燕,刘爱辉,等. TC4合金在不同摩擦体系中磨损性能的研究[J]. 稀有金属材料与工程, 2017,46(9):2449-2454. WANG L, DING H Y, LIU A H, et al. Wear performance of TC4 alloys in different tribo-systems[J]. Rare Metal Materials and Engineering, 2017, 46(9):2449-2454.
[16] LI X X, ZHOU Y, LI Y X, et al. Dry sliding wear characteristics of Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy at various sliding speeds[J]. Metallurgical and Materials Transactions A, 2015, 46(9):4360-4368.
[17] LI X X, ZHOU Y, JI X L, et al. Effects of sliding velocity on tribo-oxides and wear behavior of Ti-6Al-4V alloy[J]. Tribology International, 2015, 91:228-234.
[18] 魏敏先. 严酷工况下钢铁材料的氧化磨损及轻微-严重磨损转变[D]. 镇江:江苏大学, 2011. WEI M X. Oxidative wear and mild-to-severe wear transition of steels and irons under severe conditions[D]. Zhenjiang:Jiangsu University, 2011.
[1] 王欣, 许春玲, 李臻熙, 裴传虎, 汤智慧. 喷丸强度和表面覆盖率对TC4钛合金室温疲劳性能的影响[J]. 材料工程, 2020, 48(9): 138-143.
[2] 朱鸿昌, 罗军明, 朱知寿. TB17钛合金β相区动态再结晶行为及转变机理[J]. 材料工程, 2020, 48(2): 108-113.
[3] 钦兰云, 何晓娣, 李明东, 杨光, 高博文. 退火处理对激光沉积制造TC4钛合金组织及力学性能影响[J]. 材料工程, 2020, 48(2): 148-155.
[4] 元云岗, 康嘉杰, 岳文, 付志强, 朱丽娜, 佘丁顺, 王成彪. 不同温度下等离子渗氮后TC4钛合金的摩擦磨损性能[J]. 材料工程, 2020, 48(2): 156-162.
[5] 张军, 刘崇宇. 粉末冶金法制备CNT和SiC混杂增强铝基复合材料的摩擦磨损性能[J]. 材料工程, 2020, 48(11): 131-139.
[6] 卢轶榕, 郑华勇, 陈秀华, 汪海. 三维机织复合材料/钛合金混杂板缝合连接剪切失效机理[J]. 材料工程, 2020, 48(11): 162-169.
[7] 何代华, 朱威, 刘翔, 刘平. 硅酸钙及硅酸钠浓度对钛合金表面生物活性涂层的影响[J]. 材料工程, 2020, 48(10): 148-156.
[8] 李晓红, 张彦华, 李赞, 李菊, 张田仓. 热处理温度对TC17(α+β)/TC17(β)钛合金线性摩擦焊接头组织及力学性能的影响[J]. 材料工程, 2020, 48(1): 115-120.
[9] 陈航, 弭光宝, 李培杰, 王旭东, 黄旭, 曹春晓. 氧化石墨烯对600℃高温钛合金微观组织和力学性能的影响[J]. 材料工程, 2019, 47(9): 38-45.
[10] 刘石双, 仇平, 蔡建明, 李娟, 黄旭, 于辉, 刘利刚. Ti60钛合金室温保载疲劳性能及断裂行为[J]. 材料工程, 2019, 47(7): 112-120.
[11] 周强, 程军, 于振涛, 崔文芳. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为[J]. 材料工程, 2019, 47(6): 121-128.
[12] 欧阳佩旋, 弭光宝, 李培杰, 何良菊, 曹京霞, 黄旭. NiCrAl/YSZ/NiCrAl-B.e复合涂层对α+β型高温钛合金燃烧产物的影响[J]. 材料工程, 2019, 47(5): 43-52.
[13] 张欣悦, 张德坤, 陈凯, 徐寒冬. 聚醚醚酮与髌骨软骨间的生物摩擦学特性[J]. 材料工程, 2019, 47(2): 129-137.
[14] 许良, 黄双君, 回丽, 王磊, 周松, 赵晴. TB6钛合金疲劳小裂纹扩展行为[J]. 材料工程, 2019, 47(11): 171-177.
[15] 徐祥, 杨明, 梁益龙, 张世伟, 龚乾江. 响应面法对一种新型摩擦材料的性能优化及其磨损机理[J]. 材料工程, 2018, 46(9): 101-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015《材料工程》编辑部
地址:北京81信箱44分箱 邮政编码: 100095
电话:010-62496276 E-mail:matereng@biam.ac.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn